
Visualizing Coclustered Matrices

David Watkins Columbia University
New York, New York USA

January 4th, 2016
djw2146@columbia.edu

ABSTRACT
Many videos on the Web about international events are maintained
in different countries, and some come with text descriptions from
different cultural points of view. We perform a spectral decomposi-
tion algorithm to cluster these videos based on their visual memes
and their written tag identifiers. The spectral decomposition pro-
vides a matrix containing tags clustered with tags, and coclustered
with visual memes, as well as visual memes clustered with visual
memes and coclustered with tags. We take one of these coclustered
matrices and provide a Web service for visualizing the clustering in
scatterplot format, force-directed graph layout, and histograms. In
addition we have demonstrated that Applying algorithms such as
Reverse Cuthill McKee can allow for the viewer to see a diagonal-
ized representation of the matrix.

1. MOTIVATION
In coordination with Professor John Kender at Columbia Univer-

sity and PhD candidate Chun-Yu Tsai at Columbia University, the
current research project, Cross-Cultural Annotation for Video
Archives of Human-Interest International Events[5], gener-
ates a coclustered matrix with visual memes and tags as the axes.
The original method for visualizing the coclustered matrix was to
use the matrix display functionality within Matlab. This grew cum-
bersome and was not representative of the vision for the planned
consumer web application. Thus a new web based data visualiza-
tion tool was conceived utilizing new web technologies and addi-
tional functionality not present in Matlab.

2. METHODS
In the next few subsections I will discuss the technologies and

algorithms used in the process of the research project.

2.1 Background
Throughout this discussion of my research I will frequently refer

to visual memes and tags. Visual memes correspond to frames
of a video that have been analyzed and cataloged previously. Each
of these frames have a series of textual tags associated with them.
These tags and frames are then independently and co-clustered to
generate a large matrix. One of the quadrants of this matrix has a
section devoted to visual memes in the y-axis and tags in the x-axis,
which is the basis for the data used in this project.

2.2 Algorithms
2.2.1 Compressed Row Storage Matrix

When using sparse matrices, frequently a compressed row stor-
age matrix (CRS) is used. The matrix is stored using two vectors,
the column-index corresponding to the values that are set to 1, and
the row-pointer corresponding to the value indexes where each
row starts. For example consider the non-square matrix[

1 0 1 1
1 1 0 0
0 0 1 1

]

The number of rows is 3 and the number of columns is 4. The
number of rows and columns must be stored to make sure the orig-
inal matrix can be recreated later. The row-pointer vector will
correspond to the values 〈1, 4, 6, 8〉 and the column-index vector
will correspond to the values 〈1, 3, 4, 1, 2, 3, 4〉[3]. This example
assumes that matrix only had values of 1 and 0. There is a more
general algorithm that allows for varying values.

CRS was used for my research project specifically because the
Reverse Cuthill McKee implementation I was using relied on the
Python library Numpy. In its implementation it assumed the matrix
being passed was in CRS format and so I implemented functionality
that converted the dense matrix between CRS and dense formats in
Javascript.

2.2.2 Reverse Cuthill-McKee
The Reverse Cuthill-McKee algorithm (RCM) is an algorithm to

permute a sparse matrix that has a symmetric sparsity pattern into
an organized matrix with a smaller bandwith. The algorithm pro-
duces an ordered n-tuple of indexes which is the new order of the
vertices[2]. The algorithm requires an n× n matrix.

Because the matrix I was provided did not have the characteris-
tic n × n that was required, I performed the multiplication of the
tranpose with the original matrix to generate a matrix of the appro-
priate dimensions. This did mean that any block diagonalization of
one dimension effectively ignored the other because the data cor-
responding to the other axis was removed. In order to reorder the
visual memes, AAT was used. In order to reorder the tags, ATA
was used.

The entirety of the code listing for RCM is based on a python
implementation built using Numpy[1]. The specifications of the
Python implementation are not important, but all functionality that
existed within the numpy library was implemented correctly for
Javascript. In particular the matrix functions for multiplication and
transpose were implemented.

Argsort was also implemented in Javascript which sorts an array
and returns an array of the indexes that correspond to the sorted
positions for each of those items.

2.2.3 Sørensen-Dice Coefficient
The Sørensen-Dice Coefficient (dice filter) is a statistic used to

compare the similarity between two vectors. It is most commonly
calcualted for two vectors as the following:

d = 2|AḂ||A|2 + |B|2

The value d corresponds to a specific coefficient relating the sim-
ilarity of the two vectors[4].

I used this statistic to determine whether two columns had enough
similarity that they could be effectively combined. I would then re-
move one of the columns and then continue filtering the rest of

the matrix. I only implemented column comparison but adding
the collapsing of rows would also be something worth evaluating.
The specific dice coefficient threshold is a simple parameter defined
within the UI on the application.

2.2.4 Histogram Filter
A histogram filter counts the number of occurrences at a partic-

ular row or column and then removes the most and least common
of the entire histogram generated. Due to the density of the data
used a cutoff of 60 most/least common was used to remove data
from visualization. This value is very dependent on the data used
as well as the sparsity, and therefore would need further research to
determine a robust way of generating such a value.

2.3 Javascript
The majority of this project relies on various Javascript frame-

works including Angular.js and the Angular Material Design frame-
work, vivagraph.js, d3.js, and highcharts. Research for the best
frameworks to use were performed over the course of the semester
as new features were conceived or problems arose from the existing
frameworks.

2.3.1 Angular.js and Angular Material Design
Angular.js is a 100% Javascript framework that extends basic

html functionality to offer Model-View-Controller (MVC) design
principles within the browser1. In the context of this project Angu-
lar allowed me to build simple communications with the web server
in the form of services that would specifically load the files needed
to display all of the graph data. Getting each file is broken down
into a single function call each.

1 service.getMatrix = function($scope, id, q) {
2 $http.get(matrixURL).then(function(response)

{$scope[id] = response.data;
q.resolve();});

↪→

↪→

3 }
4

5 service.getVisualMemeIndex = function($scope, id,
q) {↪→

6 $http.get(visual_meme_indexURL)
7 .then(function(response) {$scope[id] =

response.data; q.resolve();});↪→

8 }
9

10 service.getCluster1 = function($scope, id, q) {
11 $http.get(cluster1URL)
12 .then(function(response) {$scope[id] =

response.data; q.resolve();});↪→

13 }

Listing 1: Loading 3 files easily using Angular services

The application for visualizing the data was created simply by
loading one web page and then embedding additional html snip-
pets into a section designated within the html code. This allows for
a more responsive UI as opposed to loading each individual data
visualization as a separate UI. As mentioned before the html tem-
plates were written using Jade thus making the code look less like
html. There was no conflict using Jade and Angular together in the
same application.

Angular Material Design (AMD) is a Javascript and css frame-
work that offers simple to use functionality for building attractive
and user friendly user interfaces2. It works very well with Angu-
lar.js and thus was a simple choice to use in this research project.
While bootstrap was used in the previous version of the UI, it is not
designed for use with Angular and therefore would have slowed
down development of the application. Use of AMD also lets the
user interface to be easily accessible from a mobile browser with-
out further configuration.
1http://Angularjs.org
2http://Material.angularjs.org

Figure 1: Ease of use of new interface in mobile
setting

Angular also allows convenient creation of additional controllers.
Through defining a controller for each view I was able to make sure
the code I wrote was concise and only served one purpose.

1 app.controller(’highchartController’,
2 function highchartController($scope, $q,

loadService, parseService) {↪→

3 ...
4 }

Listing 2: Defining the highChartController in highChartCon-
troller.js

The $scope variable within an angular application defines what
each controller has access to within its own scope. It is an effective
way to make sure controllers are self contained entities. The $q pa-
rameter is used in angular to allow for the application of promises,
or bits of code that need to be executed in a specific order3. The
additional two services that are passed as parameters were cus-
tom written specifically for this application. For more information
about them see section 2.4.

Angular works very well with other frameworks so long as they
do not modify the HTML code of the web page. Angular makes fre-
quent modifications to the Domain Object Model (DOM) of a web
page as part of its design, so when a controller reloads part of a web
page could interfere with another framework that assumes the re-
gion is still there. The use of d3.js and Highcharts were specifically
chosen because they operate agnostic of the current DOM and will
reload any number of times. However performance is certainly a
factor that was not optimized during this research process.

2.3.2 Vivagraph
Vivagraph is a Javascript library written for drawing force di-

rected layouts4. A force directed layout is specifically used for
drawing large dynamic graphs without specifying the absolute po-
sitions for the nodes. My initial approach to supporting this layout
was to allow for visualization of how each of the connections be-
tween either visual meme nodes, tag nodes, or both visual memes
and tags existed in the data. The use of Vivagraph initially was
because it appeared to be the fastest Javascript framework for visu-
alizing force directed graphs.

Through initial testing the first graphs generated by the frame-
work were subsets of the data so as to demo the application of a
force directed layout. As more of the data set was added to the
visualization it slowed the browser so much that it was difficult to
close the application. In this instance I had loaded 75% of the ma-
trix by simply capping the amount of rows and columns I added to
the graph layout at 75%. Also in this case only the visual memes
were the nodes and the tags were the connections between each
visual meme.

I had also attempted to use both tags and visual memes as nodes
and each link was a location in the matrix that was set to 1 for that
visual meme index and tag index. This was with 40% of the data
from the matrix.

After some discussion based on these initial findings, it was de-
cided that the best course of action would be to intelligently reduce
the number of nodes being viewed by the force directed graph. The
first initial attempt was to use a histogram filter on the data. Be-
cause of the density of the graph, the 40 most common and 40 least
common nodes were removed from the graph. Otherwise the new
view of the graph would be non-performant.

During development I tried to incorporate colored nodes to de-
note whether it was a US video, European video, neither or both,
however Vivagraph did not offer a convenient way of doing so. I
also experimented with using quadrants of data to reduce the num-
ber of nodes. In this schema each node was roughly a 40 × 40
submatrix of the original matrix. The links between each of the

3https://docs.angularjs.org/api/ng/service/$q
4https://github.com/anvaka/VivaGraphJS

Figure 2: Vivagraph force directed graph at 75% of
the data matrix

Figure 3: Vivagraph force directed graph at 40% of
the data matrix

nodes were a situation in which any of the inner nodes shared a tag
with another submatrix.

2.3.3 D3
As I kept developing I realized that Vivagraph was becoming too

slow of a solution to offer real-time support for force directed graph
visualization. My options were to remove force directed graphs
from the visualization tool, produce static images on the server
side, or find another Javascript based framework. d3.js is a very
popular data visualization Javascript framework that has been in
active development since 2011. d3 supports many forms of data
visualization, including force directed graph layouts5.

I followed this tutorial in order to initialize d3 in the browser and
display a force directed graph. d3 makes it easy to modify graph
link strength and associate colors with nodes. It also has additional
functionality for supporting mouseover events to see when a spe-
cific node is being highlighted by the user. These features made
it simple and easy to color nodes based on their types (specifically
US Videos and European videos) and also made it easy to represent
how connected two nodes were.

5http://d3js.org/

http://bl.ocks.org/mbostock/4062045

Figure 6: d3 force directed graph with tags as nodes and visual memes as links

Figure 4: Vivagraph force directed graph with his-
togram filter

I experimented with the use of visual memes as nodes, tags as
nodes, and both tags and visual memes as nodes with d3 in partic-
ular. I have offered these views as a setting in the UI as well (for
more information see the tutorial). In these three scenarios I had
to use histogram filtering in order to reduce the number of nodes
to a reasonable level to be viewed. The default value set was 60,
meaning that the 60 most and least common nodes were removed
from the view. The most interesting observations made during this
process is that clear relationships could be determined between the
clusters of nodes. The higher the number of connections between
any node and another node increased the thickness of the links.
For my testing I used red nodes to convey US Videos, blue nodes
to convey European videos, purple nodes to convey videos corre-
sponding to both cultures, and grey nodes to convey videos that
belonged to neither.

Figure 5: Vivagraph quadrants of 40

Figure 7: d3 force directed graph with tags as links and visual memes as nodes

Figure 8: d3 force directed graph with tags and visual memes as nodes

2.3.4 Highcharts
To display the matrix in the simplest way possible, a scatterplot

graph was used. After researching many solutions, Highcharts ap-
peared to be the most feature rich while also being performant for
excess of 1,000,000 data points. Highcharts has support for color-
ing nodes and uses sparse storage of data points to allow for dy-
namic data display6. Using Highcharts I was able to quickly iterate
on features we discussed in our meetings.

Using the Highcharts graph I was able to conveniently display
data filtering techniques such as Dice Filters and Histogram Filters
and also reorganize data using the Reverse Cuthill McKee algo-
rithm. I also implemented additional functionality to approximate
additional matrices based on the first one by adding random noise
to the graph. The rate at which random noise and the number of
additional matrices generated were both parameters built in the UI.
In order to visualize change over time, or view multiple matrices
simultaneously the alpha value for the color of each of the nodes
was reduced below 1 and each generated matrix was added to the
high charts graph.

For the block diagonalization I implemented a version of the Re-
verse Cuthill McKee algorithm that relied on compressed row stor-
age of the matrix that would reorganize both the tag axis and the
visual meme axis. I was able to use AMD to quickly add a setting
to allow the user to choose either of these organizations or both at
the same time.

Also built using the HighCharts library were a series of His-
tograms that allowed for viewing how common a particular visual
meme or tag was in the matrix. This was constructed very easily
by iterating over each of the axes of the matrix. These histograms
were then used again for the histogram filters.

In addition to the histogram filters I implemented the dice fil-
tering algorithm to reduce the number of rows and columns that
meet a specific similarity determined by the dice coefficient of two
columns. I only implemented column comparison, however adding
additional functionality for comparing rows would be trivial. The
user is able to adjust the dice coefficient using a slider on the UI.

2.4 Pre-existing Code
Provided by Skylar Pagenkopf, a wealth of pre-existing code-

base for a user interface to display cross cultural news videos and
their information. The application relied on Node.js7 for serving
the content, MongoDB8 for storing the data associated with the
videos, and Jade for templating the web pages. In the user interface
it featured web frameworks such as Bootstrap9 and Timeline.js10.

For the purposes of this project, only the Node.js backend and
the jade templates were modified from the original source to allow
support of the new data visualization tools. Additional source files
were added to the project which included Javascript frameworks,
additional jade templates, and matrix files. The login functional-
ity was disabled to make sure that development was simpler and
because the data visualization tool did not rely on data that was
secured by user access.

2.5 New Code Layout
For this application several new files were added to the existing

source. In order to most conveniently serve the content for this
application, the majority of the files used were placed in the "pub-
lic/js" folder. The following Javascript files were added:

2.5.1 appController.js

6http://www.highcharts.com/
7https://nodejs.org/en/
8https://www.mongodb.org/
9http://getbootstrap.com/

10https://timeline.knightlab.com/

Contains the listing for each of the views (force directed graph,
scatterplot, and histogram) and defines a simple controller to pop-
ulate the list of navigable views.

2.5.2 graphCleanerService.js
Contains several functions for modifying and manipulating the

matrix retrieved from the server. Used by all three of the views
for filtering and applying the RCM algorithm to the data. This
Javascript file was built using the Angular service functionality.

• calculate data - Generates a series of fake matrices based
on the initial one.

• generateHistogram - Takes in a matrix and generates
the corresponding histogram for a particular axis.

• filterData - Filters the data using histogram filters.

• parseData - Converts the textual representation of the ma-
trix (A.txt) and converts it to a 2D array.

• parseMemeIndex - Converts the textual representation
of the visual meme index and converts it into a dictionary for
easy lookup of each visual meme index.

• parsecluster - Converts the textual representation of the
cluster file (Cluster1.txt) into a dictionary to lookup the clus-
ter index and determine the cultural origin of the visual meme.

• dice coefficient - takes two arrays and computes their dice
coefficient.

• rcm - Takes a matrix and returns the RCM block diagonal-
ized form of it.

2.5.3 highChartController.js
Controls the scatterplot view of the matrix. Built using the Angu-

lar controller definition protocol. Utilizes both the loadDataService
and the graphCleanerService to manipulate data.

2.5.4 histogramController.js
Controls the histogram view of the matrix. Built using the Angu-

lar controller definition protocol. Utilizes both the loadDataService
and the graphCleanerService to manipulate data.

2.5.5 loadDataService.js
Uses the Angular $http11 directive for retrieving the files from

the web server. Built using the Angular protocol for services.

2.5.6 vivagraphyController.js
Controls the force directed layout view of the matrix. Built using

the Angular controller definition protocol. Utilizes both the load-
DataService and the graphCleanerService to manipulate data.

In order to make sure the styles of the data visualization tool were
correct, a display.css file was added to "public/css" for this page
only. The following jade templates were added to the directory
"views":

2.5.7 display.jade
Controlled by the appController, this view contains the template

for all subsequent views. It also loads all of the required Javascript
libraries required for displaying the data.

2.5.8 v_highchart.jade
The template for the scatterplot view.

2.5.9 v_histogram.jade
The template for the histogram view.

2.5.10 v_vivagraph.jade
The template for the force directed graph view.
The file index.jade in "views" was modified to allow the user

to navigate to the newly created views.
11https://docs.angularjs.org/api/ng/service/$http

Figure 9: The raw matrix displayed using Highcharts

Figure 10: A histogram of the number of tags corresponding to each visual meme

Figure 11: A histogram of the number of the visual memes corresponding to each tag

Figure 12: The original matrix generated by Matlab

2.6 Data
In order to get this application working the following data files

were generated using the provided Matlab scripts and then stored
in the "public/data" directory as the following filenames.

2.6.1 A.txt
During my research I was provided with a series of Matlab files

to generate and display a coclustered matrix with visual memes as
the y-axis and tags as the x-axis. For the entirety of the project
I used one such matrix comparing videos on the Ebola epidemic
which featured 390 tags and 423 visual memes. The file itself has
each column comma delimited where each value is either a 0 or a
1. Each row is newline delimited.

2.6.2 Cluster1.txt
The Cluster1 file corresponds to a series of clusters of videos

that contain a series of visual memes. I was able to use this file to
determine whether a particular visual meme corresponded to a US
Video or a European video. The format for a particular cluster was
filtered using a specific regex that followed the following format:

Cluster([0-9]+):
([0-9]+)(../(US_videos|EU_videos)[.]*

2.6.3 visual_meme_index
A file that listed all of the visual meme indexes and the cluster

that each one belonged to. Allowed me to connect which visual
meme belonged to which culture based solely on the cluster.

3. LOGISTICS

3.1 Timeline
The following timeline best captures the goals of each week

and how they were completed. Meetings were held with Profes-
sor John Kender and Chun-Yu Tsai weekly every Monday starting
on September 28th until the final meeting on December 14th.

September 28th Read previous report submissions includ-
ing the NSF proposal, the ICMR papers
and the ACM background short paper.

October 5th Sketch designs for visualizing data and cre-
ate some demos of different ways of visu-
alizing the matrix provided.

October 12th Generate rudimentary visualization of
memes and tags and use modified alpha
values to demonstrate overlap of visual
memes and tags in a scatterplot.

October 19th Implement provided visualization using
Bootstrap framework and add force di-
rected layout example.

October 26th Meeting postponed due to scheduling con-
flict.

November 2nd Iterate on force directed layout by adding
colors corresponding to videos that origi-
nated from the US and videos that origi-
nated from Europe. Also add these colors
to the scatterplot representation.

November 9th Find appropriate research in applying
block diagonalization to an m× n matrix.

November 16th Apply speedup techniques by using ar-
rays instead of lists in the javascript code.
Take the rowsum and column sum of visual
memes and tags in the matrix and remove
the most/least popular. Show strength of
relationships in force directed layout with
thicker lines.

November 21st Find research on removing outliers from
matrices.

November 30th Clean up code source and migrate to an-
gular.js to make adding features and main-
taining code easier.

December 7th Implement Reverse Cuthill McKee algo-
rithm and observe block diagonalization
effects on the scatterplot.

December 14th Write report describing process through re-
search.

3.2 Git History
The following is a log of all git commits made over the course

of the semester. Git commits were made only when large features
were added.
commit 25f95a47464da0d79e7f0de92b98397815677dac
Author: David Watkins <djw2146@columbia.edu>
Date: Fri Dec 11 23:38:09 2015 -0500

Implemented RCM filtering

commit e44a19eb711f552bd42535ce3e3888856a32dac5
Author: David Watkins <djrival7@gmail.com>
Date: Mon Dec 7 13:35:28 2015 -0500

Added angular js implementation to improve overall
code↪→

commit b984abe297bfb93e954275fb683acf514b7df090
Author: David Watkins <djw2146@columbia.edu>
Date: Mon Nov 23 08:24:52 2015 -0500

Added additional filtering methods

commit 72e5398eca8177a97c7857e63ead9111f551ed45
Author: David Watkins <djw2146@columbia.edu>
Date: Mon Nov 16 04:20:24 2015 -0500

Another viva test

commit cbb0ef66fddef03d56d2a99ea85b5b4db100babc
Author: David Watkins <djw2146@columbia.edu>
Date: Mon Nov 16 03:32:58 2015 -0500

Figure 13: Index of the web application

Added initial vivagraph.js test, refactored code

commit d4d9378a69332a108adda1e571d1d45dfb450fcc
Author: David Watkins <djw2146@columbia.edu>
Date: Mon Nov 9 06:16:38 2015 -0500

Initially adding all extra features

4. TUTORIAL
4.1 Prerequisites

In order to run the application you must have a copy of Node.js
and MongoDB installed on your system. A copy of the dump/
directory is also required which has been kept within the compute
cluster. Download this file and initialize the database with the com-
mand

>mongorestore dump/

4.2 Getting Started
To run the application first make sure you have an instance of

mongod running by running the command

>mongod

If you have never installed Node.js before, run the following com-
mand

>npm install

in the directory of the cloned repository. Once the dependencies
are installed run

>node app

which will run the web server.

4.3 Viewing the Coclustered Matrix
Once the app is running open an instance of a web browser and

navigate to localhost:3000. This is the default port, if you have
changed the configuration then correct the port and go to that ad-
dress. Because login credentials have been disabled in my reposi-
tory, logging in will not be necessary.

You should then click on Display Coclustering Graph which
will take you to http://localhost:3000/display.

The navigation bar on the left of the application contains hyper-
links to the three possible data visualizations of the tool. Both the
force directed layout and the highcharts layout feature several pa-
rameters to modify the overall view of graph. The histogram view
does not have any parameters. The sidebar menu can be closed by
pressing the hamburger menu icon on the top-left. The search and
triple dot icons in the top-right do not do anything at the moment.

For the highcharts view,

• The alpha value corresponds to the alpha color of each of the
dots in the scatterplot

Figure 14: AMD default ui

Figure 15: Initial screen when viewing histograms

• The dice threshold is on a scale of 0.1 to 1 of how similar
each column needs to be before it is removed

• The threshold for filtering data is the cutoff for the histogram
filter

• The number of random matrices to show is currently not
working and neither is generating fake data, so do not use
these

• The radius for the dots on the graph controls how big each
value on the scatterplot appears

• The filter types correspond to either the histogram filter or
the dice filter for reducing the data set in the scatterplot

• The diagonal types correspond to the visual meme, tag, or
both being block diagonalized using the RCM algorithm

• The reload button refreshes the scatterplot using the newly
assigned parameters.

The force directed layout is largely the same as the scatterplot
view,

• The dice threshold is on a scale of 0.1 to 1 of how similar
each column needs to be before it is removed

Figure 16: Initial view when viewing scatterplot
view

Figure 17: Initial screen when viewing force directed
layout

• The threshold for filtering data is the cutoff for the histogram
filter

• The number of random matrices to show is currently not
working and neither is generating fake data, so do not use
these

• The radius for the dots on the graph controls how big each
value on the scatterplot appears however this should be re-
moved

• The filter types correspond to either the histogram filter or
the dice filter for reducing the data set in the scatterplot. The
dice filter should not be used with the force directed layout

• The graph types correspond to which axes of the matrix cor-
respond to the nodes in the graph. The options are making
visual meme nodes, making tags nodes, and making both
nodes.

• The reload button refreshes the forced directed layout using
the newly assigned parameters.

The colors for all of these views are hardcoded so that US videos
are red, European videos are blue, videos that are clustered to both
are purple, and videos that belong to neither are gray.

4.4 Code Listing
All code mentioned in this report can be found and downloaded

from here (https://github.com/DavidWatkins/Cross-Cultural-Video-
Aggregator)

5. RESULTS AND ANALYSIS
5.1 Analysis
5.1.1 Forced Directed Layout Representation

Originally while using Vivagraph to simulate the force directed
layout of the graph was very slow and caused development to take
much longer than with d3. Once d3 was used the iterations between
views of the force directed layout were faster. Adding additional
features in d3 was very simple and the community support for the
framework made designing the app even easier.

As for the data visualization itself, it was almost impossible to
draw the graph when all of the nodes were generated. The browser
I was using was not able to process the immense amount of data
required to draw the graph. I had to consistently use the histogram
filter with a cutoff of 60 in order to get a performant representa-
tion of the relationships between the nodes. When using the visual
memes as nodes, there were clear clusters being formed between
several visual memes and their tag links. The only novel view was
where both the visual memes and the tags were nodes, which al-
lowed for an interesting grouping of nodes being interconnected
through a series of tags and visual memes.

More analysis needs to be conducted as to which visual memes
each of the groupings correspond to and how each of these clusters
arise within the data itself. This will require building additional
functionality to view the visual meme frames as well as the tags
within the data visualization UI.

https://github.com/DavidWatkins/Cross-Cultural-Video-Aggregator

5.1.2 Scatterplot Representation
In my testing of different representations of the data using a scat-

terplot, I found certain settings were best when combined with oth-
ers. One combination I was unable to test due to limitations in how
I could code the result was the dice filter with the block diagonal-
ization. I tested block diagonalization of both visual memes, tags,
and both at the same time with the histogram filter being applied
to the data with a cutoff of 60. I attempted to block diagonalize at
smaller values and found the graph was not as diagonalized. The
algorithm used to generate the diagonalization has one bug in it
causing the matrix to be flipped on the x-axis, something I did not
have time to fix. Some further analysis that should be done is how
linearly related the diagonalized data is relative to the disorganized
version.

Using the dice coefficient showed that summarizing the columns
greatly reduced the number of tags in the data. This did, however,
not integrate well with other features in the application (RCM and
force directed layout). Because of this the dice filtering should only
be used to visualize a summary of the data.

I also added a small setting allowing the user to adjust the alpha
value of the points on the graph so as to make them more visi-
ble. After some simple testing, an alpha value of 0.2 was the most
convenient for viewing the data, but because this was an aesthetic
choice I have the option for changing the alpha value in the UI.

5.2 Next Steps
The following is a series of next steps that need to be taken with

respect to development of this application

• The data is currently being loaded from a series of text files.
These files need to be migrated to a MongoDB database as
well as create a utility for adding additional data.

• The RCM algorithm only allows for one axis to be diagonal-
ized at a time due to its requirement of an n× n matrix. Ad-
ditional block diagonalization algorithms should be explored
that allow for m× n matrices.

• The login functionality that existed in the original applica-
tion was disabled for the development of the data visualiza-
tion. This needs to be integrated and re-enabled so the final
consumer application can be created. This also means that
the UI needs to be standardized across the data visualization
and the consumer application which will require migrating
the data visualization to bootstrap or the pre-existing code-
base to Angular.

• The force directed layout and scatterplot layout lack visual
information regarding which visual memes and tags the in-
dexes correspond to. The user of the data visualization should
be able to mouseover the matrix to view the corresponding
visual memes and tags.

• The RCM implementation currently needs to be flipped across
the x-axis so that it is properly diagonalized top-left to bottom-
right as opposed to bottom-left to top-right.

• The dice filtering algorithm is not currently compatible with
either the block diagonalization or the force directed layout.
The codebase should be updated to support the additional
functionality.

• One of the original goals of the research project was to sup-
port a timeline of matrices and view them conveniently. This
should be reincorporated using the Timeline.js that exists in
Skylar’s application.

6. CONCLUSION
Throughout the semester I have worked on developing a reliable,

easily customizable and visually appealing user interface using a
variety of Javascript frameworks so as to make the data visualiza-
tion of visual memes and tags in Chun-Yu Tsai’s research more

accessible. I have succeeded in creating a proper visualization of
the data in scatterplot, force directed layout, and histogram repre-
sentations. Moving forward there are a variety of paths that this
research project can take that all require expertise in Javascript and
good cluster visualization techniques.

7. REFERENCES
[1] Science and samgaetang.blogspot.com. Science & samgae-

tang: Reverse cuthill-mckee ordering in python & cython,
2016.

[2] E. Cuthill and J. McKee˙ Reducing the bandwidth of sparse
symmetric matrices. In Proceedings of the 1969 24th Na-
tional Conference, ACM ’69, pages 157–172, New York, NY,
USA, 1969. ACM.

[3] Spencer Patty. Compressed row storage (crs) format for sparse
matrices, 2014-4-2.

[4] People.revoledu.com. JaccardâĂŹs coefficient, 2016.

[5] Chun-Yu Tsai and John R. Kender. Tracking cultural differ-
ences in news video creation. In Proceedings of the 23rd
ACM International Conference on Multimedia, MM ’15,
pages 951–954, New York, NY, USA, 2015. ACM.

Figure 18: Histogram filtered matrix with a cutoff of 20. Not clean enough to apply block diagonalization

Figure 19: Histogram filtered matrix with a cutoff of 60. Sparse enough to run the RCM algorithm on.

Figure 20: Histogram filtered matrix with a cutoff of 60 and block diagonalized using the tags. Proved to be
an effective diagonalization with the larger columns at the bottom-most left-most position.

Figure 21: Histogram filtered matrix with a cutoff of 60 and block diagonalized using the visual memes. Not
as organized as the previous tag diagonalization.

Figure 22: Histogram filtered matrix with a cutoff of 60 and block diagonalized using the visual memes
and tags. Because the block diagonalization for both axes occur independent of one another the result is
disorganized.

Figure 23: Applying the dice filter to the matrix with a dice coefficient cutoff of 50% similarity

Figure 24: Showing a higher alpha value for each position in the plot

	Motivation
	Methods
	Background
	Algorithms
	Compressed Row Storage Matrix
	Reverse Cuthill-McKee
	Sørensen-Dice Coefficient
	Histogram Filter

	Javascript
	Angular.js and Angular Material Design
	Vivagraph
	D3
	Highcharts

	Pre-existing Code
	New Code Layout
	appController.js
	graphCleanerService.js
	highChartController.js
	histogramController.js
	loadDataService.js
	vivagraphyController.js
	display.jade
	v_highchart.jade
	v_histogram.jade
	v_vivagraph.jade

	Data
	A.txt
	Cluster1.txt
	visual_meme_index

	Logistics
	Timeline
	Git History

	Tutorial
	Prerequisites
	Getting Started
	Viewing the Coclustered Matrix
	Code Listing

	Results and Analysis
	Analysis
	Forced Directed Layout Representation
	Scatterplot Representation

	Next Steps

	Conclusion
	References

