
Optimizing the Shape Completion Pipeline

David Watkins Columbia University
New York, New York USA

May 11, 2017
djw2146@columbia.edu

ABSTRACT
Expanding on the work done by Jake Varley et al. for the Shape
Completion Enabled Robotic Grasping[3], I performed a series of
optimizations that would enhance the pipeline to increase its per-
formance and its flexibility. The marching cubes algorithm has
been rewritten to support GPU operations, preliminary code has
been written for completing entire scenes based on work done by
Evan Shelhamer et al.[2], and written a headless depth renderer to
help generate scenes for training data much faster than the current
pipeline. These three contributions will prove to effectively push
forward the shape completion project to a much more usable state
for not only our lab but also any labs that may choose to use this
software in the future.

1. INTRODUCTION
In this section I will go over the various technologies and plat-

forms that were used to build the enhancements to the shape com-
pletion pipeline as well as describe the shape completion pipeline
itself.

1.1 CUDA
CUDA is an extension of C++ whereby specific instructions are

added to allow for GPU programming. This allows a programmer
to develop their program to support several orders of magnitude
higher parallelization than what is possible on a CPU. Modern day
GPUs have evolved into highly parallel multi-core systems that al-
low for efficient manipulation of large blocks of data. There are
many different versions of the CUDA software development kit
(SDK) but for the purposes of this paper we have used primarily
3.5.

In order to process elements on the GPU, a developer must first
transfer the data that he wants processed onto the GPU itself, then
call a compiled kernel to then run on the GPU itself with references
to the data loaded onto the GPU, then transfer the results back. This
might look like the following:

texture<float, 2, cudaReadModeElementType> tex;

void foo()
{

cudaArray* cu_array;

// Allocate array
cudaChannelFormatDesc description =

cudaCreateChannelDesc<float>();
cudaMallocArray(&cu_array,

&description,
width,
height);

// Copy image data to array
cudaMemcpyToArray(cu_array,

image,
width*height*sizeof(float),
cudaMemcpyHostToDevice);

// Set texture parameters (default)
tex.addressMode[0] = cudaAddressModeClamp;
tex.addressMode[1] = cudaAddressModeClamp;
tex.filterMode = cudaFilterModePoint;
tex.normalized = false;

// Bind the array to the texture
cudaBindTextureToArray(tex, cu_array);

// Run kernel
dim3 blockDim(16, 16, 1);
dim3 gridDim((width + blockDim.x - 1)/ blockDim.x,

(height + blockDim.y - 1) / blockDim.y,
1);

kernel<<< gridDim, blockDim, 0 >>>
(d_data, height, width);

// Unbind the array from the texture
cudaUnbindTexture(tex);

} //end foo()

__global__ void kernel(float* odata, int height, int width)
{

unsigned int x =
blockIdx.x*blockDim.x + threadIdx.x;

unsigned int y =
blockIdx.y*blockDim.y + threadIdx.y;

if (x < width && y < height) {
float c = tex2D(tex, x, y);
odata[y*width+x] = c;

}
}

This program is loading a image texture onto the GPU and for
each pixel loads it into an array on the gpu. This trivial exam-
ple starts with a call cudaMemcpyToArray which takes the host
memory and transfers it over to the GPU. Typically these calls can
be expensive the more data is being transferred, therefore it is gen-
erally advised to schedule these transfers while data is being si-
multaneously processed via a kernel on the GPU. Modern GPUs
support simultaneous memory operations as well as processing op-
erations which can help amortize the cost of transferring data. Later
in this paper I will discuss how I utilized this amortization to reduce
the overall cost of computing the marching cubes on a completed
mesh in order to get an order of magnitude of performance boost.

The reason why a GPU is effective for this particular project is
because the original processing of individual voxels had a triple-
nested for loop for each dimension (x, y, z) where each iteration
of the loop is independent of another. When programs have such
loops it is better to spawn a series of threads to execute each of
those iterations in parallel on a GPU where there are thousands of
cuda cores which can execute the code at the same time. The actual
implementation details of how this was done will be discussed later.

Figure 1: The pipeline of a GeForce 8800 GPU de-
scribing the process of 1) copying data from the
CPU to the GPU 2) initiating a kernel call 3) ex-
ecuting a copy of the kernel across the thousands
of threads within a GPU and finally 4) copying the
result back to the CPU.

1.2 OpenGL
OpenGL is a cross-language API for rendering 2D and 3D vec-

tor graphics. It is designed to interact with a GPU to allow for
hardware accelerated rendering of various shaded modules. This
pipeline is very useful for computing things such as depth field
maps and rendering of 2D images of a 3D scene very quickly espe-
cially when compared to something more complex such as a ray-
tracing renderer. OpenGL in particular uses was is called a pipeline
renderer whereby it uses a series of matrix transformations of the
triangles of a mesh to compute what the resultant 2D image will
look like as well as compute the distance from the camera origin to
the object itself. For the purposes of this project OpenGL was used
as a simple way of generating depth renderings of a mesh to deter-
mine per-pixel distances to each element in the mesh and thereby
generate a voxel map of an object. More about why this was useful
in a later section.

1.3 Shape Completion Pipeline
The shape completion pipeline was a robotic grasp planner that

used a partial view of a mesh and a train neural net to generate
a completed object even if certain regions of the scene were oc-
cluded. It uses a convolutional neural network (CNN) to do this
where a pointcloud captured from a single point of view is fed into
the CNN which fills the occluded regions of the scene and then a
grasp planner takes the completed object and plans grasps on it.
After the CNN returns an approximated voxel grid. This voxel grid
is merged with the original pointcloud captured from a 3d depth
camera using the marching cubes algorithm. The marching cubes
algorithm has multiple steps where performance can be enhanced,
such as the quadratic programming and depth fields stages which
are highly parallelizable. The major contribution here is increasing
the performance of this pipeline to reduce the time spent computing
the valid object model.[3]

1.4 CNNs and Scene Completion
Again, using convolutional neural networks, a team at UC Berke-

ley trained a model to identify objects within a RGBD image through
per-pixel labeling of objects of 40 known categories. These labels
are useful as they can be used within a robotics pipeline to segment
an image very rapidly and then pull specific sections of the RGBD

image that are of interest - such as getting a partial mesh to be used
within the shape completion pipeline. The data for this system was
preprocessed and in the case of the NYU depth database[1] were
touched up by a human editing the scene. Through our testing we
showed that we did not need to touch up the scene and I will discuss
this in more detail later.[2]

2. TIMELINE
For this project the general timeline followed this trajectory:

• September 6th - October 7th: Working on optimizing the
shape completion pipeline by implementing existing func-
tionality using the CUDA SDK instead.

• October 7th - November 20th: Investigating the fully con-
volutional neural network system that Trevor Darrell’s lab
put out[2] and determine how to integrate it with our current
shape completion pipeline to create a scene completion sys-
tem.

• November 1st - December 15th: Build a depth renderer that
takes in a mesh from a kinect and gives a per-pixel depth im-
age to be used for voxelization to replace the current gazebo
framework

A more meticulous schedule was not maintained and therefore
this is the highest granularity I was able to muster for the purposes
of this report.

3. PROCESS
In this section I discuss the implementation details of each of

the different projects I worked on this semester including specific
coding examples and files appended to the end of this document
describing what was done.

3.1 Shape Completion Optimization
The shape completion pipeline was relatively easy to add to con-

sidering it was a finished application and it was a simple optimiza-
tion task to make it run faster using CUDA programming. I mod-
ified two files: quadprog.cpp and dfields.cpp. Both of these files
had nested for loops which took a significant amount of CPU time
to compute where each loop was independent of any other iteration
of the loop.

3.1.1 Distance Fields
Take the following code that was the innermost loop of the fast-

Perim function within dfields.cpp, where i,j,k are the dimensions of
the voxel grid:

...
(*g)[i][j][k]=1.0;
int neg_i=1;int neg_j=1;int neg_k=1;
int pos_i=1; int pos_j=1; int pos_k=1;
if(i==0)neg_i=0;
else if(i==g->dims[0]-1)pos_i=0;
if(j==0)neg_j=0;
else if(j==g->dims[1]-1)pos_j=0;
if(k==0)neg_k=0;
else if(k==g->dims[2]-1)pos_k=0;
//search neighboring voxels for different value
for(int i_=i-neg_i; i_<=i+pos_i; i_++){

for(int j_=j-neg_j; j_<=j+pos_j; j_++){
for(int k_=k-neg_k; k_<=k+pos_k; k_++){

if((*volume_grid)[i][j][k] !=
(*volume_grid)[i_][j_][k_]){

(*g)[i][j][k]=0.0;
}

}
}

}
...

This entire code block can be extracted into its own function
within the GPU where it iterates through each voxel within the
voxel grid and calculates the perimeter for each element. This is
done by checking the center voxel of a 3x3x3 voxel grid within the
larger voxel grid and determining if there is a voxel presence around
the current voxel. Normally computing these can be slower because
global memory accesses, which the volume_grid would be in the
global memory scope, are much slower. However in more mod-
ern versions of CUDA these operations have been optimized and
they are fast enough for relatively small grids - and for a 40x40x40
grid with only 32000 elements it would only have a 64KB footprint
which is very small by GPU standards. The voxel grid would have
to be several megabytes in size before performance drops would be
seen.

There are several other functions within the distance fields file
which were able to be optimized. The getsqdist function had three
triple-nested for loops in a row each of which had an internal block
of code in which the previous iteration had no impact on a future
iteration. I took each of these three loops and turned them into three
CUDA kernel functions each of which operated on a volume_grid
which was simply a 3d voxel grid.

__global__ void sqdistpt1(float* dist_grid, float*
dest_grid, int xdim, int ydim, int zdim) {↪→

int center =
blockIdx.x*blockDim.x+threadIdx.x;↪→

if(center < xdim * ydim * zdim) {

int i,j,k,var=center;
get3DIndex(i,j,k,var,xdim,ydim,zdim);

//get squared dist to closest 0 in
row (i's)↪→

float min = 100000;
for(int index=0; index<xdim;

index++){↪→

float dist = 100000;
if(dist_grid[getFlatIndex(index,

j, k, xdim, ydim,
zdim)]==0.0){

↪→

↪→

dist = (index-
i)*(index-i);↪→

}
if(dist<min){

min=dist;
}

}
//set value of voxel to min q dist
dest_grid[center]=(float)min;

}
}

__global__ void sqdistpt2(float* dist_grid, float*
dest_grid, int xdim, int ydim, int zdim) {↪→

int center =
blockIdx.x*blockDim.x+threadIdx.x;↪→

if(center < xdim * ydim * zdim) {

int i,j,k,var=center;
get3DIndex(i,j,k,var,xdim,ydim,zdim);

//get squared dist to closest 0 in
row (i's)↪→

int min = 100000;
for(int index=0; index<ydim;

index++){↪→

int dist =
dist_grid[getFlatIndex(i,
index, k, xdim, ydim,
zdim)] + (index - j) *
(index - j);

↪→

↪→

↪→

↪→

if(dist<min) min=dist;

}
//set value of voxel to min q dist
dest_grid[center]=(float)min;

}
}

__global__ void sqdistpt3(float* dist_grid, float*
dest_grid, int xdim, int ydim, int zdim) {↪→

int center =
blockIdx.x*blockDim.x+threadIdx.x;↪→

if(center < xdim * ydim * zdim) {

int i,j,k,var=center;
get3DIndex(i,j,k,var,xdim,ydim,zdim);

//get squared dist to closest 0 in
row (i's)↪→

int min = 100000;
for(int index=0; index<zdim;

index++){↪→

int dist =
dist_grid[getFlatIndex(i,
j, index, xdim, ydim,
zdim)] + (index - k) *
(index - k);

↪→

↪→

↪→

↪→

if(dist<min) min=dist;
}
//set value of voxel to min q dist
dest_grid[center]=(float)min;

}
}

By separating out these functions I could remove the need for
several triple nested for loops calls. Conveniently the getsqdist
function took as an argument the result of the fastPerim function,
so I was able to use the data as it existed on the GPU for future
processing as well. This saved time that would otherwise be spent
copying the result back to the CPU and back to the GPU. Once the
three calls to the separated getsqdist functions were called I was
able to write a sqrt function that called sqrt on each voxel in the
grid to get the true distance of each voxel grid from the neighbors.

__global__ void sqrtgpu(float* dist_grid, float*
dest_grid, int xdim, int ydim, int zdim) {↪→

int center =
blockIdx.x*blockDim.x+threadIdx.x;↪→

if(center < xdim * ydim * zdim) {
dest_grid[center] =

sqrt(dist_grid[center]);↪→

}
}

Putting all of these functions together I was able to define a series
of kernel calls each of which were able to use the result from the
previous CUDA kernel call.

gridPtr dfield_gpu(gridPtr volume_grid) {
float* flat_g = flatten(volume_grid);
int xdim = volume_grid->dims[0], ydim =

volume_grid->dims[1], zdim =
volume_grid->dims[2];

↪→

↪→

int g_size = xdim * ydim * zdim;

float* dest_grid, *src_grid;
cout << "Initializing dfields arrays" <<

endl;↪→

GPU_CHECKERROR(cudaMalloc((void**)
&dest_grid, g_size * sizeof(float)));↪→

GPU_CHECKERROR(cudaMalloc((void**)
&src_grid, g_size * sizeof(float)));↪→

GPU_CHECKERROR(cudaMemcpy(src_grid,
flat_g, g_size * sizeof(float),
cudaMemcpyHostToDevice));

↪→

↪→

int BLOCK_SIZE = 256;
int NUM_BLOCKS =

(int)ceil(double(g_size)/BLOCK_SIZE);↪→

//Alternate buffers so we don't have to
move data around on the device↪→

//Buffers effectively alternate between
input and output↪→

cout << "dfield Fast perim gpu" << endl;
fastPerimGPU<<<NUM_BLOCKS,

BLOCK_SIZE>>>(src_grid, dest_grid,
xdim, ydim, zdim);

↪→

↪→

cout << "dfield sqdist" << endl;
sqdistpt1<<<NUM_BLOCKS,

BLOCK_SIZE>>>(dest_grid, src_grid,
xdim, ydim, zdim);

↪→

↪→

sqdistpt2<<<NUM_BLOCKS,
BLOCK_SIZE>>>(src_grid, dest_grid,
xdim, ydim, zdim);

↪→

↪→

sqdistpt3<<<NUM_BLOCKS,
BLOCK_SIZE>>>(dest_grid, src_grid,
xdim, ydim, zdim);

↪→

↪→

cout << "dfield sqrt" << endl;
sqrtgpu<<<NUM_BLOCKS,

BLOCK_SIZE>>>(src_grid, dest_grid,
xdim, ydim, zdim);

↪→

↪→

//Copy data back to device
GPU_CHECKERROR(cudaMemcpy(flat_g,

dest_grid, g_size * sizeof(float),
cudaMemcpyDeviceToHost));

↪→

↪→

cudaThreadSynchronize();

cudaFree(dest_grid);
cudaFree(src_grid);

cudaThreadSynchronize();

return unflatten(flat_g, volume_grid,
xdim, ydim, zdim);↪→

}

By alternating the passing of src_grid and dest_grid I was able to
reuse the results from previous kernel calls. I determined the num-
ber of blocks needed for each kernel call by taking the number of
voxels in the grid and dividing by the number of threads per block
where each thread was assigned to a single voxel. This held true
for every single function call within dfields.cpp. For the purposes
of good code design - if CUDA was present on the system compil-
ing the shape completion pipeline it would compile the dfields.cu
file, and if there was no CUDA present it would compile the orig-
inal dfields.cpp. I did not change the syntax of the dfield function
which meant I could add compiler flags to designate which one to
use within the header.

3.1.2 Quadratic Programming
The quadratic programming algorithm is a much trickier algo-

rithm to implement as it requires a series of discrete step calls in
order to perform the necessary optimization of the voxel grid. The
step function is run approximately 512 times to get a reasonable re-
sult for the voxel grid. Originally within each of these steps was a
single for loop where each iteration was not dependent on another.
Because of this it made it a perfect candidate for GPU optimization
- however it was tricky because each step is dependent on the re-
sult of the previous one. Therefore I determined I was able to flip
the input and output arrays on the doStep function on each iteration
thereby utilizing the data from the previous iteration and providing

a new result without reading memory back to the CPU or copying
memory over on the GPU.

This transformation was from this version of the code:

...
for(int i = 0; i < args->iter; i++){

if(i % 2){
in = buf2;
out = buf1;

}
else{

in = buf1;
out = buf2;

}

for(int r = 0; r < size; r++){
doStep(r, *in, *out, ir, jc, pr,

args->invdg, args->lb,
args->ub);

↪→

↪→

}
}
...

to the following code:

...
for(int i = 0; i < args->iter; i++){

if(i > 0) {
float* swap = inCu;
inCu = outCu;
outCu = swap;

}
doStepDevice<<<NBLOCKS,BLOCK_SIZE>>>(inCu,

outCu, irCu, jcCu, prCu, invdgCu, lbCu,
ubCu, size);

↪→

↪→

}
...

The doStep function did not change except for the fact that it was
run on a GPU instead of on the CPU. This allowed the code to run
each set of doStep instructions at the same time and therefore take
roughly 1/512th of the time it would have otherwise taken.

3.2 Scene Completion Integration
Utilizing the object per-pixel labeling system that the UC Berke-

ley lab put out, I devised a system that would be able to capture
a scene from a Kinect camera and output a series of pointclouds
for detected objects within a cluttered scene. The overview of the
algorithm is as follows:

Data: PointCloud
Result: Segmented pointclouds for each detected object
objects = fcnn(PointCloud).getAllObjects();
foreach object in objects do

completedShape = shapeCompletion(object);
grasp = planGrasp(completedShape);
executeGrasp(grasp);

end
Algorithm 1: Find all objects in a scene

In order to segment the scene pointcloud a rough per-pixel label-
ing is obtained from the fcnn. This will be a little noisy and will
likely not translate perfectly onto the scene as some examples have
shown. Once we have a rough per-pixel labeling we can use su-
pervoxel clustering to find patches of the pointcloud that are likely
clustered together and then find the average object id for that given
cluster. We can perform this operation for each cluster in the scene
and then merge similarly labeled nearby clusters.1

1http://pointclouds.org/documentation/tutorials/supervoxel clustering.php

Figure 2: An example of supervoxels and adjacency
graph generated for a cloud

Once each of these clouds are properly labeled and merged, we
can filter by the pointclouds that only have the object tag. This will
give us a much larger point cloud from the entire scene that con-
tains any object point cloud. We then apply the euclidian clustering
algorithm to segment the scene into separate pointclouds each rep-
resenting a singular object. Each of these partial meshes are then
passed into the shape completion pipeline and a full object with a
pose is generated. This gives the system fine grained control over
which object to then choose for the pick and place pipeline.

Note that this code has not yet been written and a lot of the work
for this has been purely experimental. One step of the fcnn is to
generate an HHA formatted file from the depth image captured
from the Kinect. The HHA format for the NYU depth database[1]
is manually touched up to be more accurate, however the system
we are trying to design is much more dynamic. We decided to test
whether the HHA format is still accurate given just the depth image
without a touched up representation. In order to do this we took the
matlab saveHHA code that was provided by UC Berkeley and mod-
ified it so that it took the same raw depth image as both arguments
instead of one raw and one touched up. For results comparing the
analysis of this section of code see the next section. Once we have
this pipeline fully configured, we can then take the fcnn and use it
on a raw pointcloud from the Kinect.

There are some artifacts that are held over from using the raw
information - but the resultant per-pixel labeling is only slightly
worse than that of the touched up version.

3.3 Depth Rendering
The depth rendering pipeline was a system that took a series of

object files and rendered the depth image of the object. Given that
there are several thousand objects and for each object we want sev-
eral different views of the same object, the faster the depth renderer
goes the better. Currently the system uses Gazebo, a robot simu-
lation platform2, to generate all the depth images which can take
a few seconds per image. Instead I decided to streamline the pro-
cess by building a standalone, headless depth renderer that uses
OpenGL to generate the depth images.

2http://gazebosim.org/

Figure 3: Actual RGB image being processed

Figure 4: HHA image from the raw depth infor-
mation. Artifacts from some black colored or dark
surfaces where depth was not accurately captured.

In order to build this system I took a simple OpenGL 2D renderer
as a base that reads in an obj file and outputs a screen with a view
of the object model as it is supposed to be displayed. This view
can be tilted or panned to view the object at different angles. I then
took the code for manipulating the object in space and randomly
assigned the object a rotation. I set this function to be called within
a for loop that runs for approximately 500 times and at each interval
I took a depth image of the object as it looked in that pose.

For each of these depth images I stored them in a specific di-
rectory to keep them for later use. The major advantage to using
OpenGL over Gazebo is that OpenGL gives us far more control
over the design of the application and will run a lot faster since it
no longer has to create a simulation environment. OpenGL also
supports a headless rendering system which makes it even faster.

...
while (_model->hasMoreSnapshots() &&

!glfwWindowShouldClose(_window))↪→

{
glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);↪→

_model->update();
_model->reload();

_model->screenShot(0);

glfwSwapBuffers(_window);
glfwPollEvents();

}

Figure 5: HHA generated from touched up depth
information. The artifacts are no longer there.

Figure 6: Per-pixel labeling of the image using the
touched up version of the hha image. Very clean
and the object labeling in red makes sense given the
scene.

...

Theoretically there are additional performance gains that could
be attained through writing a CUDA based depth renderer and re-
moving the need for the entire OpenGL pipeline, but because the
OpenGL pipeline is a very well optimized and hardware acceler-
ated system it didn’t make sent to do this.

Figure 7: Per-pixel labeling of the image using the
raw depth hha file. Less organized but would be
cleaned up by using a supervoxel algorithm.

Figure 8: OpenGL rendering a cat object model

4. RESULTS AND ANALYSIS
4.1 Experiments
4.1.1 Shape Completion Testing

In order to affirm I had written the correct code, I took sample
meshes from the shape completion pipeline code and compared the
CPU results with the GPU results. I found that there was no dif-
ference in the results. I also found that the code was able to run an
order of magnitude faster. The code that ran on the CPU was taking
on average 8.3 seconds to run on a quad core Intel CPU. I was able
to get the runtime of the shape completion framework down to an
average 1.2 seconds on the same CPU using a GeForce GTX 780
Ti GPU.

4.1.2 HHA Comparison
The raw HHA files differed from their touched up counterparts

by roughly 27% on average by comparing the pixel values between
the two images. The resulting per-pixel labeling showed a differ-
ence of roughly 80 pixels on average between the two, which was
a great result considering that there was no human intervention to
achieve this result. With additional cleaning this result would likely
become more accurate than it is now.

4.1.3 Depth Rendering

By creating a new depth rendering system I was able to reduce
the time spent rendering from several days to only a few minutes.
The new rendering platform can achieve a framerate of 120fps,
which is 240 times faster than the currently existing Gazebo sys-
tem. However there are some bugs with the implementation so it
can only render 2D images at the moment. More testing is neces-
sary to fix the errors with OpenGL and depth rendering.

4.2 Next Steps
The next steps would be to fully implement the scene segmen-

tation pipeline and take the code for the depth renderer and fully
flesh it out. A lot of the framework is in place to get these appli-
cations implemented but due to time constraints they have not yet
been finished.

5. CONCLUSION
In conclusion, these additions to the shape completion pipeline

have shown to be promising and with continued effort could be
enhanced. The most promising result is the order of magnitude
performance increase of the shape completion system. Once the
depth renderer is operational the generation of test data will also be
much faster.

6. REFERENCES
[1] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fer-

gus. Indoor segmentation and support inference from rgbd im-
ages. In ECCV, 2012.

[2] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. CoRR,
abs/1605.06211, 2016.

[3] Jacob Varley, Chad DeChant, Adam Richardson, Avinash Nair,
Joaquín Ruales, and Peter K. Allen. Shape completion enabled
robotic grasping. CoRR, abs/1609.08546, 2016.

	Introduction
	CUDA
	OpenGL
	Shape Completion Pipeline
	CNNs and Scene Completion

	Timeline
	Process
	Shape Completion Optimization
	Distance Fields
	Quadratic Programming

	Scene Completion Integration
	Depth Rendering

	Results and Analysis
	Experiments
	Shape Completion Testing
	HHA Comparison
	Depth Rendering

	Next Steps

	Conclusion
	References
	Code Listing

