
Predictive Capabilities of SMT Solvers

David Watkins Columbia University
New York, New York USA

May 13th, 2016
djw2146@columbia.edu

ABSTRACT
SMT solvers have, in recent years, undergone optimizations that al-
low them to be considered for use in commercial software. Usages
for such SMT solvers include program verification, buffer over-
flow detection, bit-width prediction, and loop unrolling. Compa-
nies such as Microsoft have pioneered SMT research through their
Z3 solver. In this paper I investigate the potential techniques for
implementing these techniques as well as provide examples of po-
tential applications of SMT solvers.

1. MOTIVATION
In coordination with Professor Stephen Edwards at Columbia

University, the project Hardware synthesis from a recursive
functional language? that compiles a subset of Haskell into a
hardware description language has many potential sources of opti-
mization. These optimizations would include loop unrolling, bit
width prediction to reduce wire density, and verify buffer over-
flows. The main investigative work is to determine whether SMT
solvers have been developed enough to be incorporated into the
work flow of the current compiler project.

2. METHODS
In the next few subsections I will discuss the technologies and

algorithms used in the process of the research project.

2.1 Background
There are techniques of finding the bit-widths of variables with-

out using an SMT solver during the static analysis phase of compi-
lation. These techniques involve some form of arithmetic operation
on each of the values and forming a dependency mapping.

2.1.1 Interval Arithmetic
Interval arithmetic is a naive approach to predicting ranges of bit

widths. The idea is: given some operation between two symbolic
integers or numbers, perform a specific operation on the interval
defined by the symbolic variable. An interval is defined as the range
over two integer values, such as x = [1, 2] where xmin = 1 and
xmax = 2. The four operations defined in interval arithmetic? are:

• Addition -

[xmin, xmax]+[ymin, ymax] = [xmin+ymin, xmax+ymax]

• Subtraction -

[xmin, xmax]−[ymin, ymax] = [xmin−ymax, xmax−ymin]

• Multiplication -

[xmin, xmax]− [ymin, ymax] =

[min(xminymin, xmaxymin, xminymax, xmaxymax),

max(xminymin, xmaxymin, xminymax, xmaxymax)]

• Division -

[xmin, xmax]

[ymin, ymax]
= [xmin, xmax] ∗ [

1

ymin
,

1

ymax
]

where 0 /∈ [ymin, ymax].

Figure 1: The interpolative step in the FRIDGE
static analysis tool?

The FRIDGE system was a module added to the ANSI-C com-
piler to allow for an additional datatype known as "fixed" that spec-
ified,

• wl - The maximum value

• iwl - The minimum value

• sign - The integer sign of the value

• cast - How to handle overflow as well as quantization, such
as rounding, truncation, or neither

• value - The C value that is being operated on

FRIDGE used an interpolative step during compilation to deter-
mine the ranges of the variables during compilation by first map-
ping all of the operations of the variables to a list and then ana-
lyzing the relationships between the variables over the course of
compilation. This system is not robust enough to give reasonable
approximations for the interval that variables exist because the op-
erations it performs quickly increase in value beyond where they
are useful. Multiplication often results in ranges that are grossly
inflated over what the true range of the value is.

2.1.2 Affine Arithmetic
Affine arithmetic was another system used to try to interpolate

values during compilation. It works by representing a variable as

a sum of constituents each with an independent uncertainty source
that contributes to the total uncertainty of an output.

x=̂x0 + x1ε1 + x2ε2 + ...+ xnεn

where εi ∈ [−1, 1].
The uncertainty can contribute to other symbols in the compu-

tation chain, keeping correlations between them. The same four
operations as interval arithmetic are defined here.

• Addition/Subtraction -

x̂± ŷ = (x0 ± y0) +
n∑

i=0

(xi ± yi)εi

• Constant Multiplication -

cx̂ = (cx0) +

n∑
i=0

(cxi)εi

• Constant addition/subtraction -

x̂± c = (x0 ± c) +
n∑

i=0

(xi)εi

• General Multiplication -

x̂ŷ = (x0 +

n∑
i=1

xiεi)(y0 +

n∑
i=1

yiεi)

One such implementation of affine arithmetic is the MiniBit?
compilation system. It performed two steps on the incoming pro-
gram in order to determine the affine interval ranges.

• Precision Analysis - Analyzing the sensitivity of the output
from a computation to slight changes in the bit widths.

• Range Analysis - Studying the data range of the computation
and ensuring that the variables in the design have enough bits
to accommodate this range.

• Then use the results of these computations in aggregate to
find the optimal ranges of variables

Precision analysis allows us to determine which bit to round to
when performing quantization. Effectively uses a fractional bit
width to approximate how much of an exponent is required on top
of the integer bit width already needed to represent the number.
Affine arithmetic also suffers from explosion of values during the
multiplication stage, and thus, while it offers a better approxima-
tion than interval arithmetic, does not offer an improvement that is
as useful.

2.2 Satisfiability Modulo Theories
Satisfiability Modulo Theories (SMT) are an advancement made

on SAT theorem provers. They allow a user to determine satisfiabil-
ity with respect to some background theory that fixes the interpre-
tations of certain predicate and function symbols. Applications of
SMT often involve of more than one theory at a time. In these cases
the satisfiability is understood as being modulo some combination
of those various theories. Array, arithmetic, fixed-width bit-vectors,
and inductive data types can all be represented using SMT?. What
makes these theories useful is that it allows a compiler to generate
a series of symbolic relationships between variables and verify that
the relationships have a satisfiable nature to them.

2.3 Algorithms
2.3.1 Fibonacci

Fibonacci is a function of an integer input giving the result as a
number following an integer sequence. It is define as:

fib(i) = fib(i− 1) + fib(i− 2)

Where fib(0) = 0 and fib(1) = 1. This creates the following
sequence of integers:

0, 1, 1, 2, 3, 5, 8, 13, 21, ...

This function is very useful when testing verification algorithms
because of its intensive recursive nature and its simplicity in rep-
resentation. There is an iterative version of this algorithm which
allows for a more stack friendly representation.

def fib(n):
a, b = 0, 1
for i in range(n):

a, b = b, a + b
return a

This python defined function iterates over all values from 0...n and
proceeds to redefine a and b until the final value a is calculated.

2.3.2 Fir Filter
Finite impulse response (FIR) is a filter whose length of input

response is of a finite duration?. This allows them to be a weighted
sum of the most recent input values:

y[n] = b0x[n] + b1x[n− 1] + ...+ bN [n−N] =

N∑
i=0

bix[n− i]

where:

• x[n] is the input signal

• y[n] is the output signal

• N is the filter order

• bi is the value of the impulse response at the ith constant

This is a convenient representation of a summation function. A
common problem when analyzing a FIR filter is to determine that
if the input range is known, does the output range exceed some
minimum and maximum value. For example, the input x may be
known to be −10 < x < 10∀x ∈ X where X is the input signal.
Given the constant bi, can the output be guaranteed to be within
−128 < y < 128∀y ∈ Y where Y is the output signal.

2.3.3 Bit Width Prediction
Bit width prediction is the static analysis of a program to deter-

mine the integer range that a value occupies in a program so as to
reduce the space required to store that variable. The proposed al-
gorithm takes a series of relationships and constraints on a series of
variables determined via interval arithmetic and uses range refine-
ment over the constraints to determine a well defined relationship
between symbolic representations of variables. The process is di-
vided into a two step process whereby a decision step selects a vari-
able, splits the range of the variable into two, and then temporarily
discards one of the sub-ranges. The second step, or propagation
step, infers ranges of other variables from the newly split range?.
The range refinement step comes after the propagation step occurs,
whereby the range is analyzed using a binary search over the range
of the variable. The SMT solver is then queried to determine if
the new, smaller range for the variable is still satisfiable. Once the
range is within a certain threshold, the result is confirmed and the
routine exits.

In the paper they also highlight timeout as a major issue, as SMT
solvers can typically run for long periods of time if given enough
complex constraints. The researchers recommended a timeout of
five minutes for their analysis, however it varies on the runtime
system and the intensity of the constraints being evaluated. In the
case of this paper, a timeout was not used in the code but an implicit
timeout of 60 seconds was used when evaluating the data.

2.3.4 Buffer Overflow Checking
A given program written in an imperative language will often

have array accesses or other buffer indexing that are vulnerable to
invalid memory accesses by incorrect indexing or overflow. One

Figure 2: Bit width prediction using an SMT solver
and an interval?

paper proposed a solution to this problem by building a system that
would detect any potential buffer overflow events by performing
a static analysis over a program, using either affine arithmetic or
interval arithmetic, or get approximations of the ranges of an array
or whether a pointer could be pointing to an invalid location in
memory. They compiled these alarms into a list, and then using an
SMT solver proceeded to refine the false alarms using a symbolic
execution step that determined whether the input program was valid
or not.

Figure 3: The Raccoon buffer overflow alarm detec-
tion algorithm with added SMT verification?

The first extracted the relevant program snippet that was causing
the false alarm by using a backward slicing that only extended to
the beginning of the current procedure. If the alarm relied on values
outside of the context of the procedure, they gave up evaluating the
alarm. The second step involved building an initial context formula
from the given snippet. The variables obtained from the slice are
given their initial values from either previous analysis or from the
initialization of them in an earlier part of the code. The third step
involves translating the relevant program snippet into SMT formu-
lae. If a statement is encountered which cannot be translated to
SMT formulae, it is mimicked using the interval results from the
first stage analysis (interval arithmetic). Then the program is sym-
bolically run through the SMT analyzer checking to see if the sys-
tem is currently satisfiable or if the values can be adjusted using
reasonable approximation to determine what might be causing the
alarm. Finally, the alarm is filtered either by evaluating the expres-
sion as satisfiable, or by reporting the alarm as a true alarm?.

2.3.5 Loop Unrolling
Researchers at KAIST? gave, as part of their analysis on buffer

overflow analysis, a method for loop unrolling. The method in-
volved providing a given context based on the previous iteration of
the loop and adding additional constraints based on the contents of
the loop. This means that each iteration of the loop is evaluated to
determine if it is a potential alarm that would prove unsatisfiable.
This means translating each iteration of the loop into a series of
SMT constraints and querying the SMT solver. On optimization
over this method involves converting an entire loop into a series
of constraints, providing a range of the inputs into the loop, and
then determining if the intermediate values are violating any satis-
fiability constraints. Both methods are costly, but they each have
their own benefits depending on whether memory space is being
optimized or runtime is being optimized. In the case of runtime
optimization, inputting a larger query once into an SMT solver will
run much faster than inputting many smaller queries. In the case
of memory optimization, the larger query will become quite expen-
sive to create and hold in memory, but the smaller queries will be
more manageable.

3. LOGISTICS

3.1 Timeline
The following timeline best captures the goals of each week

and how they were completed. Meetings were held with Profes-
sor Stephen Edwards from January 21st until May 5th.

January 21st Perform a literature review of integer pre-
diction and floating point to fixed point
conversion.

February 9th Investigate which SMT solvers are most
applicable to the research project.

February 18th Investigate iterative fibonacci and array
bounds checking with Z3.

February 25th Investigate the Lonestar GPU benchmark
as well as the AMD and NVidia pipeline.

March 1st Look into how Microsoft’s f* language
works and find a way to query Z3 which
specific requests. Also investigate how the
FRIDGE system is implemented.

March 10th Investigate arrays bounds checking using
Z3.

April 7th Implement bit width prediction algorithm
using Z3.

April 14th Retry the fibonacci unrolling using a
slightly different way to check bounds.

April 21st Look into Fir filters and bubble sort.
April 28th Writeup and analysis.

4. Z3 TUTORIAL
Z3 is a state-of-the art theorem prover that is under constant de-

velopment by Microsoft Research. It is used to check the satisfia-
bility of a series of logical formulas and offers performant results
over alternative SMT solvers. Because it is under constant develop-
ment and has a prominent research backing, it makes it an attractive
solution for SMT solving.

4.1 Prerequisites
The source for Z3 is stored in a Github repo here. Z3 is com-

patible with Windows and Linux and can be built with appropriate
tools from either of those platforms. Follow the instructions on the
corresponding Github repo to get the tool installed on your local
machine.

4.2 Getting Started
Z3 uses a language known as smt-lib to define a series of func-

tions to define a constraint over a system of equations. The entire
language definition can be found at here.

4.2.1 Using Z3Py

Z3Py was the tool of choice for much of this research because it
is convenient to use and also allows for rapid development of pro-
grams in Z3. It is a Python wrapper for Z3 that produces SMT-LIB
syntax of series of logical theorems. The following is an example
of a simple theorem finding the relationship between a, b, and c:

from z3 import *

a = Int(’a’)
b = Int(’b’)
c = Int(’c’)
s = Solver()
s.add(a == b + c)
s.add(b == 10 * c)
s.add(c == 12)

if s.check() == sat:
print(’verified’)

else:
print(’unverified’)

Z3Py has facilities for running the Z3 theorem solver directly
within a Python program by calling the Z3 binaries and injecting
the SMT-LIB syntax generated by the constraints inputted into the
solver. The associated SMT-LIB syntax for the above code is:

(declare-fun c () Int)
(declare-fun b () Int)
(declare-fun a () Int)
(assert (= a (+ b c)))
(assert (= b (* 10 c)))
(assert (= c 12))

The syntax for SMT-LIB is reverse-polish notation. The guide
for Z3Py can be found at http://www.cs.tau.ac.il/~msagiv/
courses/asv/z3py/guide-examples.htm.

4.2.2 Basic Elements
Z3Py has several basic elements used for theorem proving.
Number types

• Real - A mathematical representation for all real numbers

• Int - A mathematical representation for all integers

These are both expressed byReal and Int in Z3Py, respectively.
Z3Py also has support for fixed point representation, allowing for
analysis on the machine specific representation of floating point
numbers. For the analysis used in this paper, an 8-bit mantissa and
a 24-bit significand, but Z3 supports arbitrary precision.

The following are basic elements of the theorem prover

• ite - If Then/Else - Allows for the common programming
paradigm of If Then/Else in Z3. Useful for emulating the
common programming paradigm of If Then/Else.

• forall - For All - Over a specific range of an input symbol,
the following constraint must be satisfied.

5. RESULTS AND ANALYSIS
5.1 Experiments

Several experiments were conducted to determine feasibility in
Z3. These included implementing an iterative version of fibonacci,
a range checker for a fir filter, and determining the range and bit
widths of integer values in a series of expressions.

5.1.1 Fibonacci
There were many attempts to implement the recursive version of

fibonacci using Z3. This initially began by trying to have Z3 de-
termine the relationship between a python function and a generated
output value. Unfortunately, because Z3Py relies on SMT-LIB to
generate theories for satisfiability, using a recursive python func-
tion would not compile or generate the necessary code. Another

attempt at trying to have Z3 interpret recursive functions involved
using a ForAll constraints and defining the fibonacci function in
terms of previous values. Z3 rejected every combination of con-
straints because the relationship between a variable and itself was
not able to be resolved. Z3 does not currently support inductive
proofs, which recursive fibonacci is, and therefore had to be con-
verted into a format that was more friendly to Z3 syntax.

def fib_h(x, y, z):
if z == 0:

return x
else:

return fib_h(y, x + y, z-1)

def fib(x):
return fib_h(0, 1, x)

...
for x in range(10):

s.add(fib(x) == r)

Figure 4: Attempting to set fibonacci equal to some
result intermediate value r

s.add(ForAll(i,Implies(And(i>=2, i<20),
fib(i)==fib(i-1)+fib(i-2))))

Figure 5: Using a ForAll constraint to define fi-
bonacci as a recursive function.

The next strategy was to use an iterative version of fibonacci
that only relied on previous intermediate. This would allow for a
simple loop unrolling technique to be used, which meant carrying
out the operations upon each iteration of the fibonacci function at
each step. The first attempt of this was to generate a linear series
of relationships between equations by defining each intermediate of
fibonacci as a function of the previous set of intermediates. This in-
volved using the iterative version of fibonacci defined in an earlier
section of this paper. This worked and Z3 began producing the re-
sults of fibonacci at each step. The next step was to emulate control
flow in Z3, and this was done using the ite directive. This allowed
each iteration to be a function of whether the current iteration’s in-
dex, i, is greater than some input parameter, n. By doing this, Z3
could determine whether to stop evaluating Z3 at a particular value
or to continue with the next If statement.

If(ib < param,
And(x0 == yb,

y0 == zb,
z0 == x0 + y0,
i0 == ib + 1,
If(i0 < param,

And(x1 == y0,
y1 == z0,
z1 == x1 + y1,
i1 == i0 + 1,
And(param == i1, output == x1)),

And(i0 <= param, output == x0))),
And(ib <= param, output == xb))

Figure 6: Nested if statement controlled by a param
variable

5.1.2 Fir Filter
The implementation for FIR filters was relatively straight for-

ward. In order to evaluate whether a given output ever exceeded a
maximum value or a minimum value, the output value was set equal
to a series of additions. Because Z3 does not offer proper support
for built in for loops, the summation had to be unrolled as either a

http://www.cs.tau.ac.il/~msagiv/courses/asv/z3py/guide-examples.htm
http://www.cs.tau.ac.il/~msagiv/courses/asv/z3py/guide-examples.htm

series of additions or a single addition. If this were a function being
implemented, each iteration would need a flow control statement
similar to the fibonacci example. The coefficients were constant
values obtained through a sinc functions by taking sin(x)/x from
a range as a function of the minimum and maximum input param-
eters. This was also a test of fixed point evaluation in Z3, and it if
was capable of giving reliable results despite needing to use high
precision fixed point.

s0 = b0 ∗ xn
s1 = b1 ∗ xn + s0
s2 = b2 ∗ xn + s2

...

sn = bn ∗ xn + sn−1

output = sn

(1)

Figure 7: Fir implemented as a series of additions

output = b0 ∗ xn + b1 ∗ xn + ...+ bn ∗ xn (2)

Figure 8: Fir implemented as a long, single addition

5.1.3 Bit Width Prediction
Using the bit-width calculation algorithm as mentioned in the

Algorithms section of this paper, Z3 was tested for its accuracy and
consistency of answers. A series of examples were taken from the
paper that defined the algorithm and evaluated on the same input.

5.2 Analysis
The following timing and accuracy analysis were performed on

an Ubuntu 15.10 VM running on an Intel i7-5820k with 32GB of
RAM. Z3 was run on Python 2.7.10 using Z3 version 74.

5.2.1 Fibonacci Timing Analysis
For each of these tests, the constraints for Fibonacci were gen-

erated using some fixed maximum value (i+1) and checked to see
if they ever exceeded the answer of fib(i) + 1 for each i. The re-
sults for Fibonacci were very predictable in the case where the loop
was not unrolled. It quickly grew exponentially, and after fib(200)
takes far longer than a minute. Interestingly, the unrolled version
of Fibonacci was not very predictable, likely due to the heuristic-
based nature of Z3 optimizing the evaluation of the satisfiability
equations.

What can be surmised from this is that unrolling the for loop can
be an effective way of determining the output range of a function
assuming the function has a reasonably small input range. The re-
sults shown above are repeatable for each input and very consistent.

5.2.2 Fir Filter Timing Analysis
For the FIR filter testing, the parameters used were that −10 <

x < 10 and −1000 < y < 1000. For generating the parameters,
a simple sinc function was used ranged over −500 to 500. The
results found were that the behavior of a series of sums were more
predictable and less erratic than the fir filter using a single sum of
several variables. This is likely due to a heuristic that Z3 is using in
the back end to solve the system of equations. Due to the intensive
nature of fixed point numbers, the amount of time necessary to cal-
culate the satisfiability of the system increased rapidly. The fixed
point notation used was an 8-bit mantissa with a 24-bit significand.

5.2.3 Accuracy
The verification of Z3 using the results of a given paper were

evaluated for consistency and validity. In this case three examples
were used from Bit-Width Allocation for Hardware Accelera-
tors for Scientific Computing Using SAT-Modulo Theory?,

Figure 9: Fibonacci unrolled (blue) taking unpre-
dictable amounts of time and iterative Fibonacci
taking expected amounts of time (orange)

Figure 10: The implementation of fir filter using a
series of sums (blue) is more predictable than the
version of fir using a single sum (orange)

namely Rational Functions, Doppler effect, and a Relational exam-
ple. The main difference between the paper and the analysis in this
paper is that Z3 is being used which is a newer, more robust SMT
solver. Other examples were omitted due to the lack of documenta-
tion in the paper for how they were implemented or that they were
too similar to other examples. The paper presented a convenient
way of representing division of two symbolic symbols, but assign-
ing an intermediate value to arbitrate the division. For the sake of
determining the difference in Z3 and what analysis they performed,
the same technique was used. All values in the following examples
are defined as real numbers.

For the relational example the following constraints were used:

x <= 20
x >= -20
y <= 20
y >= -20
q2 >= 0.01
q1 == x * y
q2 == x**2 + y**2
q1 == q2 * z

For the Rational example the following constraints were used:

q1 == 25 * t ** 2 + 125
q2 == t ** 2 + 1
z1 == q1/q2
q3 == -200 * t
q4 == q2 ** 2

output HySAT SMT Z3
range bits range bits

z [−1, 1] 2 [−1, 1] 2
q1 [−400, 400] 10 [−400, 400] 10
q2 [0, 800] 10 [0, 800] 10

Figure 11: Comparison of accuracy of Relational
Function accuracy

z2 == q3 / q4
t <= 100
t >= -100

output HySAT SMT Z3
range bits range bits

z1 [24, 126] 7 [25, 125] 7
z2 [−67, 67] 8 [−65, 65] 8
q1 [124, 250126] 18 [125, 250125] 18
q2 [0, 10002] 14 [1, 10001] 14
q3 [−20001, 20001] 16 [−20000, 20000] 16
q4 [1, 100020001] 27 [1, 100020001] 27

Figure 12: Comparison of accuracy of Rational
Function accuracy

For the Doppler example the following constraints were used:

-30 <= T
T <= 50
20 <= v
v <= 20000
-100 <= u
u <= 100
q1 == 331.4 + 0.6 * T
q2 == q1 * v
q3 == q1 + u
q4 == q3 ** 2
z == q2/q4

output HySAT SMT Z3
range bits range bits

z1 [0, 138] 8 [0, 138] 8
q1 [313, 362] 6 [313, 362] 6
q2 [6267, 7228000] 23 [6268, 7228000] 23
q3 [213, 462] 8 [213, 462] 8
q4 [45539, 212890] 18 [45539, 212890] 18

Figure 13: Comparison of accuracy of Doppler Func-
tion accuracy

In some cases, such as for q2 in the Doppler example, Z3 was
able to give a slightly more precise range over the value. This is
likely to the precision value they were using during testing, which
was probably set to 2 whereas during my testing it was set to 1, thus
giving a slightly more accurate result.

5.3 Next Steps
Next steps for this analysis include providing a more robust anal-

ysis of sorting algorithms and determining how to properly analyze
them using Z3. This would likely include analyzing whether there
are any buffer overflows during sorting. It would also involve ver-
ifying that an array is sorted as a result of sorting. Also critical
is generating a general purpose algorithm for converting loops and
statements written in an arbitrary language (such as Haskell) and
converting them into Z3 constraints and how to perform the static
analysis. A method of loop unrolling is proposed in this paper,
but that is not necessarily generalizable. Other efforts would in-
clude converting more functions into Z3 syntax to see how they

translate into an SMT syntax. For the fixed point analysis, research
should be done to determine the impact that the fixed point has on
the amount of time Z3 spends to determine the satisfiability of a
system.

6. CONCLUSION
Through the use of an SMT solver (Z3), a program can be ac-

curately analyzed using static analysis. This includes determining
variable bit widths and checking for buffer overflow. The current
best techniques to do this involve loop unrolling and initially per-
forming interval arithmetic to get an approximation of the range
of the variables. Future analysis in this topic would include de-
termining how much of a program can Z3 reliably generate on its
own and to what extent can Z3 accurately determine a system. For
the purposes of a basic compiler, however, Z3 has a toolkit that is
applicable to solve most relational problems.

7. REFERENCES
Sanjit A. Seshia Clark Barrett, Roberto Sebastiani and Cesare

Tinelli. Handbook of Satisfiability. IOS Press, 2008.

H. Keding, M. Willems, M. Coors, and H. Meyr. Fridge: a fixed-
point design and simulation environment. In Design, Automa-
tion and Test in Europe, 1998., Proceedings, pages 429–
435, Feb 1998.

Youil Kim, Jooyong Lee, Hwansoo Han, and Kwang-Moo Choe.
Filtering false alarms of buffer overflow analysis using {SMT}
solvers. Information and Software Technology, 52(2):210 –
219, 2010.

A. B. Kinsman and N. Nicolici. Bit-width allocation for hardware
accelerators for scientific computing using sat-modulo theory.
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 29(3):405–413, March 2010.

D. U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk,
and G. A. Constantinides. Accuracy-guaranteed bit-width opti-
mization. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 25(10):1990–2000, Oct
2006.

FIR Filter Properties. http://dspguru.com/dsp/faqs/fir/properties.

Kuangya Zhai, Richard Townsend, Lianne Lairmore, Martha A.
Kim, and Stephen A. Edwards. Hardware synthesis from a re-
cursive functional language. In Proceedings of the 10th Inter-
national Conference on Hardware/Software Codesign and
System Synthesis, CODES ’15, pages 83–93, Piscataway, NJ,
USA, 2015. IEEE Press.

8. CODE LISTING
8.1 Fibonacci Sum

1 from z3 import *
2 import time
3 import sys
4

5

6 def unrollfib_h(param, output, cur_level,
max_level, x_old, y_old, z_old, i_old):↪→

7 i = Int(’i’ + str(cur_level))
8 z = Int(’z’ + str(cur_level))
9 y = Int(’y’ + str(cur_level))

10 x = Int(’x’ + str(cur_level))
11

12 update = And(x == y_old, y == z_old, z ==
x+y, i == i_old + 1)↪→

13 ifcond = And(i_old < param, update)
14 varcond = And(i_old == param, update)
15

16 if cur_level == max_level:
17 return And(varcond, output == x_old)
18

19 return If(ifcond, unrollfib_h(param, output,
cur_level + 1, max_level, x, y, z, i),
And(varcond, output == x_old))

↪→

↪→

20

21 def unrollfib(maxval):
22 param = Int(’param’)
23 output = Int(’output’)
24 fib = {}
25

26 x = Int(’xb’)
27 y = Int(’yb’)
28 z = Int(’zb’)
29 i = Int(’ib’)
30

31 fib["init"] = [x == 0, y == 1, z == 1, i ==
0]↪→

32 fib["body"] = unrollfib_h(param, output, 0,
maxval, x, y, z, i)↪→

33 fib["param"] = param
34 fib["output"] = output
35

36 return fib
37

38 def unrollfibto(start=0, finish=30, maxval=1000,
unrollto=200, verbose=True):↪→

39 fib = unrollfib(unrollto)
40 s = Solver()
41 s.add(fib["init"])
42

43 for i in range(start, finish+1):
44 s.push()
45 s.add(fib["param"] == i)
46 s.add(fib["output"] < maxval)
47 s.add(fib["body"])
48 s.check()
49

50 # if s.check() == unsat:
51 # print("Solution is not valid")
52 # print("fib(" + str(i) + ") is not

less than " + str(maxval))↪→

53 # return
54 # else:
55 # print("fib(" + str(i) + ") == " +

str(s.model()[fib["output"]]))↪→

56

57 s.pop()
58

59 # print("Fibonacci from ", str(start), " to
", str(finish), " is less than ",
str(maxval))

↪→

↪→

60

61 def main():
62 a = 0
63 b = 1
64

65 for i in range(0, 200000, 25):
66 t0 = time.time()
67 unrollfibto(finish=i, maxval=a + 1,

unrollto=i+1, verbose=False)↪→

68 t1 = time.time()
69

70 a, b = b, a + b
71

72 total = t1-t0
73 print(str(i) + " " + str(total))
74

75

76 main()

8.2 Fibonacci Unrolled For
1 from z3 import *
2 import time
3 import sys
4

5 def unrollfib_h(param, output, max_level):
6 i = Int(’i’ + str(max_level))
7 z = Int(’z’ + str(max_level))
8 y = Int(’y’ + str(max_level))
9 x = Int(’x’ + str(max_level))

10

11 i_old = Int(’i’ + str(max_level - 1))
12 x_old = Int(’x’ + str(max_level - 1))
13 y_old = Int(’y’ + str(max_level - 1))
14 z_old = Int(’z’ + str(max_level - 1))
15

16 prev_case = And(param == i_old, output ==
x_old)↪→

17

18 for k in range(max_level - 2, -1, -1):
19 i = i_old
20 z = z_old
21 y = y_old
22 x = x_old
23

24 i_old = Int(’i’ + str(k))
25 x_old = Int(’x’ + str(k))
26 y_old = Int(’y’ + str(k))
27 z_old = Int(’z’ + str(k))
28

29 ifcond = i_old < param
30 elsecase = And(i_old <= param, output ==

x_old)↪→

31 thencase = And(x == y_old, y == z_old, z
== x+y, i == i_old + 1, prev_case)↪→

32 prev_case = If(ifcond, thencase,
elsecase)↪→

33

34 i = i_old
35 z = z_old
36 y = y_old
37 x = x_old
38

39 i_old = Int(’ib’)
40 x_old = Int(’xb’)
41 y_old = Int(’yb’)
42 z_old = Int(’zb’)
43

44 ifcond = i_old < param
45 elsecase = And(i_old <= param, output ==

x_old)↪→

46 thencase = And(x == y_old, y == z_old, z ==
x+y, i == i_old + 1, prev_case)↪→

47 prev_case = If(ifcond, thencase, elsecase)

48

49 return prev_case
50

51

52 def unrollfib(maxval):
53 param = Int(’param’)
54 output = Int(’output’)
55 fib = {}
56

57 x = Int(’xb’)
58 y = Int(’yb’)
59 z = Int(’zb’)
60 i = Int(’ib’)
61

62 fib["init"] = [x == 0, y == 1, z == 1, i ==
0]↪→

63 fib["body"] = unrollfib_h(param, output,
maxval)↪→

64 fib["param"] = param
65 fib["output"] = output
66

67 return fib
68

69 def unrollfibto(start=0, finish=30, maxval=1000,
unrollto=200, minval=0, verbose=True):↪→

70 fib = unrollfib(unrollto)
71 s = Solver()
72 s.add(fib["init"])
73

74 s.push()
75 s.add(fib["param"] >= start)
76 s.add(fib["param"] <= finish)
77 s.add(fib["body"])
78 s.add(Or(fib["output"] > maxval,

fib["output"] < minval))↪→

79 s.check()
80

81 if(verbose):
82 if s.check() == unsat:
83 print("Solution is valid")
84 print("fib(" + str(finish) + ") is

less than " + str(maxval))↪→

85 # print(fib["body"])
86 return
87 else:
88 print("Solution is not valid")
89 print("fib(" +

str(s.model()[fib["param"]]) + ") == " +
str(s.model()[fib["output"]]))

↪→

↪→

90 print("This is either greater than "
+ str(maxval) + " or less than " +
str(minval))

↪→

↪→

91

92 s.pop()
93

94 def main():
95 a = 0
96 b = 1
97

98 for i in range(0, 5, 1):
99 t0 = time.time()

100 unrollfibto(finish=i, maxval=a + 1,
minval=0, unrollto=i+1, verbose=False)↪→

101 t1 = time.time()
102

103 a, b = b, a + b
104

105 total = t1-t0
106 print(str(i) + " " + str(total))
107

108

109 main()

8.3 Fir Unrolled v1

1 import math
2 from z3 import *
3 import time
4 import sys
5

6 def gen_fir(coefficients, num, param):
7 constraints = []
8 var_list = []
9 stmt = 0

10

11 for i in range(num):
12 var = FP(’s’ + str(i), FPSort(8, 24))
13 var_list.append(var)
14 constraints.append(var == coefficients[i]

* param)↪→

15 stmt += var
16

17 output = FP(’output’, FPSort(8, 24))
18 constraints.append(output == stmt)
19

20 return output, constraints
21

22

23 def gen_coefficients(num=1000):
24 a = []
25 for x in range(0, num):
26 op = float(x - num/2)/10.0
27 if op == 0.0:
28 op = 1.0
29 val = math.sin(op)/op
30 a.append(val)
31

32 return a
33

34

35 def unroll_fir(x_max=100):
36 param = FP(’param’, FPSort(8, 24))
37

38 a = gen_coefficients(num=x_max)
39 output, constraints = gen_fir(a, x_max,

param)↪→

40

41 fir = {}
42

43 fir["body"] = constraints
44 fir["param"] = param
45 fir["output"] = output
46

47 return fir
48

49

50 def main(param_low, param_high, out_low,
out_high, depth, inc):↪→

51 for i in range(0, depth, inc):
52 t0 = time.time()
53

54 fir = unroll_fir(i)
55 s = Solver()
56 s.add(fir["body"])
57 s.add(And(fir["param"] >= param_low,

fir["param"] <= param_high))↪→

58 s.add(Or(fir["output"] > out_high,
fir["output"] < out_low))↪→

59 s.check()
60 # print(s.sexpr())
61

62 # if s.check() == unsat:
63 # print("Fir filter is between -128

and 128")↪→

64 # else:
65 # print("Fir filter failed")

66 # float_val =
(s.model()[fir["output"]])↪→

67 # float_val =
float(float_val.significand()) * (2**
float(float_val.exponent()))

↪→

↪→

68 # print("Result: ", str(float_val))
69

70 t1 = time.time()
71 print(str(i) + " " + str(t1-t0))
72

73

74 if len(sys.argv) != 7:
75 print("Not enough arguments...")
76 exit(0)
77

78 plow = float(sys.argv[1])
79 phigh = float(sys.argv[2])
80 olow = float(sys.argv[3])
81 ohigh = float(sys.argv[4])
82 num = int(sys.argv[5])
83 inc = int(sys.argv[6])
84

85 main(plow, phigh, olow, ohigh, num, inc)

8.4 Fir Unrolled v2
1 import math
2 from z3 import *
3 import time
4 import sys
5

6 def gen_fir(coefficients, num, param):
7 constraints = []
8 var_list = []
9 stmt = 0

10

11 for i in range(num):
12 var = FP(’s’ + str(i), FPSort(8, 24))
13 var_list.append(var)
14 # constraints.append(var ==

coefficients[i] * param)↪→

15 stmt += coefficients[i] * param
16

17 output = FP(’output’, FPSort(8, 24))
18 constraints.append(output == stmt)
19

20 return output, constraints
21

22

23 def gen_coefficients(num=1000):
24 a = []
25 for x in range(0, num):
26 op = float(x - num/2)/10.0
27 if op == 0.0:
28 op = 1.0
29 val = math.sin(op)/op
30 a.append(val)
31

32 return a
33

34

35 def unroll_fir(x_max=100):
36 param = FP(’param’, FPSort(8, 24))
37

38 a = gen_coefficients(num=x_max)
39 output, constraints = gen_fir(a, x_max,

param)↪→

40

41 fir = {}
42

43 fir["body"] = constraints
44 fir["param"] = param
45 fir["output"] = output
46

47 return fir
48

49

50 def main(param_low, param_high, out_low,
out_high, depth, inc):↪→

51 for i in range(0, depth, inc):
52 t0 = time.time()
53

54 fir = unroll_fir(i)
55 s = Solver()
56 s.add(fir["body"])
57 s.add(And(fir["param"] >= param_low,

fir["param"] <= param_high))↪→

58 s.add(Or(fir["output"] > out_high,
fir["output"] < out_low))↪→

59 s.check()
60 # print(s.sexpr())
61

62 # if s.check() == unsat:
63 # print("Fir filter is between -128

and 128")↪→

64 # else:
65 # print("Fir filter failed")
66 # float_val =

(s.model()[fir["output"]])↪→

67 # float_val =
float(float_val.significand()) * (2**
float(float_val.exponent()))

↪→

↪→

68 # print("Result: ", str(float_val))
69

70 t1 = time.time()
71 print(str(i) + " " + str(t1-t0))
72

73

74 if len(sys.argv) != 7:
75 print("Not enough arguments...")
76 exit(0)
77

78 plow = float(sys.argv[1])
79 phigh = float(sys.argv[2])
80 olow = float(sys.argv[3])
81 ohigh = float(sys.argv[4])
82 num = int(sys.argv[5])
83 inc = int(sys.argv[6])
84

85 main(plow, phigh, olow, ohigh, num, inc)

8.5 Simple Bubble Sort
1 from z3 import *
2 import time
3 import sys
4

5 s = Solver()
6

7 length = Int(’length’)
8 index = Int(’index’)
9 s.add(ForAll(index, Implies(And(index <= 100,

index >= 20), index <= length)))↪→

10 s.add(And(index <= 100, index >= 0))
11 s.add(And(length <= 100, length >= 0))
12

13 print (s.check())
14 print(s.model())

8.6 Bit Width Prediction
1 from z3 import *
2 from math import log, ceil
3 import sys
4

5 def refine(solver, upper, lower, function):
6 THRESHOLD = 1

7

8 U = upper
9 L = lower

10 x2 = U
11 x1 = L
12 solver.check()
13

14 #Check upper limit
15 while x2 - x1 > THRESHOLD:
16 limit = (x2 + x1)/2
17 solver.push()
18

19 solver.add(function < limit)
20

21 if solver.check() == sat:
22 x2 = limit
23 else:
24 x1 = limit
25 solver.pop()
26 # print limit
27

28 # x1 = 10
29 L = x1
30 x2 = U
31 x1 = L
32 #Check lower bound
33 while x2 - x1 > THRESHOLD:
34 limit = (x2 + x1)/2
35 solver.push()
36

37 solver.add(function > limit)
38

39 if solver.check() == sat:
40 x1 = limit
41 else:
42 x2 = limit
43 solver.pop()
44 # print limit
45

46 U = x2
47 return U, L
48

49 class Model:
50 def __init__(self, name):
51 self.args = []
52 self.internals = []
53 self.constraints = []
54 self.outputs = []
55 self.name = name
56

57 def addConstraint(self, z3expr):
58 self.constraints.append(z3expr)
59

60 def addArg(self, arg):
61 self.args.append(arg)
62

63 def addOutput(self, output):
64 self.outputs.append(output)
65

66 def addInternal(self, internal):
67 self.internals.append(internal)
68

69 def getSolver(self):
70 s = Solver()
71 for constraint in self.constraints:
72 s.add(constraint)
73 return s
74

75 def range(self):
76 s = self.getSolver()
77 if s.check() == sat:
78 print "outputs for: " + self.name
79 for output in self.outputs:

80 U, L = refine(s, sys.maxint,
-sys.maxint, output)↪→

81 width = U - L
82 print str(output) + " Range: (" +

str(L) + ", " + str(U) + ") Bits: " +
str(ceil(log(width, 2)))

↪→

↪→

83 print "Internals for: " + self.name
84 for internal in self.internals:
85 U, L = refine(s, sys.maxint,

-sys.maxint, internal)↪→

86 width = U - L
87 print str(internal) + " Range: ("

+ str(L) + ", " + str(U) + ") Bits: " +
str(ceil(log(width, 2)))

↪→

↪→

88 else:
89 print self.name + " is not

satisfiable"↪→

90

91 def example1():
92 ex1 = Model("example1")
93

94 z = Real("z")
95 x = Real("x")
96 y = Real("y")
97 q1 = Real("q1")
98 q2 = Real("q2")
99

100 ex1.addArg(x)
101 ex1.addArg(y)
102 ex1.addInternal(q1)
103 ex1.addInternal(q2)
104 ex1.addOutput(z)
105

106 # #c1
107 ex1.addConstraint(x <= 20)
108 ex1.addConstraint(x >= -20)
109 #c2
110 ex1.addConstraint(y <= 20)
111 ex1.addConstraint(y >= -20)
112 # c3
113 ex1.addConstraint(q2 >= 0.01)
114 #c4
115 ex1.addConstraint(q1 == x * y)
116 #c5
117 ex1.addConstraint(q2 == x**2 + y**2)
118 ex1.addConstraint(q1 == q2 * z)
119 #c6
120 # ex1.addConstraint(ForAll([x, y], 0 ==

f(x,y)))↪→

121

122 return ex1
123

124 def dopplerexample():
125 z = Real("z")
126 q1 = Real("q1")
127 q2 = Real("q2")
128 q3 = Real("q3")
129 q4 = Real("q4")
130 T = Real("T")
131 v = Real("v")
132 u = Real("u")
133

134 ex1 = Model("dopplerexample")
135

136 ex1.addArg(T)
137 ex1.addArg(v)
138 ex1.addArg(u)
139 ex1.addOutput(z)
140 ex1.addInternal(q1)
141 ex1.addInternal(q2)
142 ex1.addInternal(q3)
143 ex1.addInternal(q4)
144

145 ex1.addConstraint(q1 == 331.4 + 0.6 * T)
146 ex1.addConstraint(q2 == q1 * v)
147 ex1.addConstraint(q3 == q1 + u)
148 ex1.addConstraint(q4 == q3 ** 2)
149 ex1.addConstraint(z == q2/q4)
150

151 #Parameters
152 ex1.addConstraint(-30 <= T)
153 ex1.addConstraint(T <= 50)
154 ex1.addConstraint(20 <= v)
155 ex1.addConstraint(v <= 20000)
156 ex1.addConstraint(-100 <= u)
157 ex1.addConstraint(u <= 100)
158

159 return ex1
160

161 def rationalexample():
162 ex1 = Model(’rationalexample’)
163

164 z1 = Real("z1")
165 z2 = Real("z2")
166 q1 = Real("q1")
167 q2 = Real("q2")
168 q3 = Real("q3")
169 q4 = Real("q4")
170 t = Real("t")
171

172 ex1.addArg(t)
173 ex1.addOutput(z1)
174 ex1.addOutput(z2)
175 ex1.addInternal(q1)
176 ex1.addInternal(q2)
177 ex1.addInternal(q3)
178 ex1.addInternal(q4)
179

180 ex1.addConstraint(q1 == 25 * t ** 2 + 125)
181 ex1.addConstraint(q2 == t ** 2 + 1)
182 ex1.addConstraint(z1 == q1/q2)
183 ex1.addConstraint(q3 == -200 * t)
184 ex1.addConstraint(q4 == q2 ** 2)
185 ex1.addConstraint(z2 == q3 / q4)
186 ex1.addConstraint(t <= 100)
187 ex1.addConstraint(t >= -100)
188

189 return ex1
190

191 def handle_function(function_model):
192 s = function_model.getSolver()
193 function_model.range()
194

195 def main():
196 handle_function(example1())
197 handle_function(rationalexample())
198 handle_function(dopplerexample())
199

200 main()

