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Abstract:1

This work provides an architecture which uses a learning algorithm that incorpo-2

rates depth and tactile information to create rich and accurate 3D models from3

single depth images. The models are then able to be used for robotic manipulation4

tasks. This is accomplished through the use of a 3D convolutional neural network5

(CNN). Offline, the network is provided with both depth and tactile information6

and trained to predict the object’s geometry, filling in the occluded regions of the7

object. At runtime, the network is provided a partial view of an object. The net-8

work then produces an initial object hypothesis using depth alone. A grasp is9

planned using this hypothesis and a guarded move takes place to collect tactile10

information. The network can then improve the system’s understanding of the11

object’s geometry by utilizing the newly collected tactile information.12

Keywords: Sensor Fusion, Grasping, Deep Learning13

1 Introduction14

Grasp planning based on raw sensory data is difficult due to occlusion and incomplete information15

regarding scene geometry. Often one sensory modality does not provide enough context to enable16

reliable planning. For example a single depth sensor image cannot provide information about oc-17

cluded regions of an object, and tactile information is incredibly sparse spatially. This work utilizes18

a 3D convolutional neural network to enable stable robotic grasp planning by incorporating both19

tactile and depth information to infer occluded geometries. This multi-modal system is able to uti-20

lize both tactile and RGBD information to form a more complete model of the space the robot can21

interact with and also to provide a complete object model for grasp planning.22

During the runtime stage, a point cloud of the visible portion of the object is captured. As described23

in section 3 it is voxelized and sent through a CNN to provide an initial hypothesis of the object’s24

geometry. This initial hypothesis is used to plan a grasp. As described in section 4 the hand is then25

moved to the planned grasp via a guarded move, stopping when contact with the object occurs. At26

this point, the newly acquired tactile information is combined with the original partial view and sent27

through the CNN to create an updated object geometry hypothesis. This new hypothesis incorporates28

both the depth and tactile information.29

The contributions of this work include: 1) an open source dataset for training a shape completion30

system using both tactile and depth sensory information, 2) a framework for integrating multi-modal31

sensory data to reason about object geometry, and 3) results comparing the completed object models32

using depth only and combined depth-tactile information.33

2 Related Work34

The idea of incorporating sensory information from vision, tactile and force sensors is not new [1].35

Despite the intuitiveness of using multi-modal data, there is still no agreed upon framework to best36

integrate multi-modal sensory information in a way that is useful for robotic manipulation tasks. In37

this work, we are interested in reasoning about object geometry in particular.38
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Several recent uses of tactile information to improve estimates of object geometry has focused on39

the use of Gaussian Process Implicit Surfaces(GPIS) [29]. Several examples along this line of work40

include [7][30] [6][10][16][26][21]. This approach is able to quickly incorporate additional tac-41

tile information and improve the estimate of the objects geometry local to the tactile contact or42

observed sensor readings. There has additionally been several works that incorporate tactile infor-43

mation to better fit planes of symmetry and super quadrics to observed point clouds [15][14][5].44

These approaches work well when interacting with objects that confirm to the heuristic of having45

clear detectable planes of symmetry or are easily modeled as super quadrics.46

There has been successful research in utilizing continuous streams of visual information similar to47

Kinect Fusion[24] or SLAM[28] in order to improve models of 3D objects for manipulation. One48

example being [20][19] In this work, the authors develop an approach to building 3D models of49

unknown objects based on a depth camera observing the robots hand while moving an object. The50

approach integrates both shape and appearance information into an articulated ICP approach to track51

the robots manipulator and the object while improving the 3D model of the object. Similarly [13]52

attaches a depth sensor to a robotic hand, and plans grasps directly in the sensed voxel grid. These53

approaches improve their models of the object using only a single sensory modality, but from many54

time points.55

3 Visual Geometric Reasoning for Robotic Grasping56

In previous work, we created a shape completion method using single depth images [2]. The work57

provides an architecture to enable robotic grasp planning via shape completion. Shape completion is58

accomplished through the use of a 3D convolutional neural network (CNN). The network is trained59

on an open source dataset of over 440,000 3D exemplars captured from varying viewpoints. At60

runtime, a 2.5D point cloud captured from a single point of view is fed into the CNN, which fills61

in the occluded regions of the scene, allowing grasps to be planned and executed on the completed62

object. Runtime shape completion is very rapid because most of the computational costs of shape63

completion are borne during offline training. This work explored how the quality of completions64

vary based on several factors. These include whether or not the object being completed existed in65

the training data and how many object models were used to train the network, and the ability of the66

network to generalize to novel objects allowing the system to complete previously unseen objects at67

runtime. Below we summarize this method and discuss how we can augment it with tactile data to68

generate more accurate complete models.69

3.1 Data Generation70

In order to train a network to reconstruct a diverse range of objects, meshes were collected from71

the YCB[8] and Grasp Database[17]. The models were run through binvox[23] in order to generate72

2563 occupancy grids. In these occupancy grids, both the surface and interior of the meshes are73

marked as occupied. In addition, all the meshes were placed in Gazebo, and 726 depth images were74

generated for each object subject to different rotations uniformly sampled (in roll-pitch-yaw space,75

11*6*11) around the mesh. The depth images are used to create occupancy grids for the portions of76

the mesh visible to the simulated camera, and then all the occupancy grids generated by binvox are77

transformed to correctly overlay the depth image occupancy grids. Both sets of occupancy grids are78

then down-sampled to 403 to create a large number of training examples. The input set (X) contains79

occupancy grids that are filled only with the regions of the object visible to the camera, and the80

output set (Y) contains the ground truth occupancy grids for the space occupied by the entire model.81

An illustration of this process is shown in Fig. 2.82
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Figure 1: CNN Architecture. The CNN has three convolutional and two dense layers. The final
layer has 64000 nodes, and reshapes to form the resulting 403 occupancy grid. The numbers on the
bottom edges show the input sizes for each layer. All layers use ReLU activations except for the last
dense layer, which uses a sigmoid.

3.2 Model Architecture and Training83

[htpb]

Figure 2: Training Data: In X, the
input to the CNN, the occupancy
grid marks visible portions of the
model. Y, the expected output, has
all voxels occupied by the model
marked.

The architecture of the CNN is shown in Fig. 1. The model84

was implemented using Keras[9], a Theano[4][3] based deep85

learning library. Each layer used rectified linear units as86

nonlinearities except the final fully connected (output) layer87

which used a sigmoid activation to restrict the output to the88

range [0, 1]. They used the cross-entropy error E(y, y′) as the89

cost function with target y and output y′:90

E(y, y0) = −(ylog(y′) + (1− y)log(1− y′))

This cost function encourages each output to be close to ei-91

ther 0 for unoccupied target voxels or 1 for occupied. The92

optimization algorithm Adam[18], which computes adaptive93

learning rates for each network parameter, was used with de-94

fault hyperparameters (β1 = 0.9, β2 = 0.999, ε = 10−8)95

except for the learning rate, which was set to 0.0001. Weights96

were initialized following the recommendations of [12] for97

rectified linear units and [11] for the logistic activation layer.98

The model was trained with a batch size of 32. Each of the 3299

examples in a batch was randomly sampled from the full train-100

ing set with replacement. They used the Jaccard similarity to101

evaluate the similarity between a generated voxel occupancy102

grid and the ground truth. The Jaccard similarity between sets103

A and B is given by:104

J(A,B) = |A ∩B
A ∪B

|

The Jaccard similarity has a minimum value of 0, where A and B have no intersection and a maxi-105

mum value of 1 where A and B are identical. During training, this similarity measure is computed106

for input meshes that were in the training data (Training Views), meshes from objects within the107

training data but from novel views (Holdout Views), and for meshes of objects not in the training108

data (Holdout Models). The CNNs were trained with an NVIDIA Titan X GPU. When we integrated109

the tactile completion into this pipeline we chose to use the same comparison of training objects and110

holdout objects as a methodology for evaluating the success of the network.111

3.3 Runtime112

At runtime the point cloud for the target object is acquired from a 3D sensor, scaled, voxelized and113

then passed through the CNN. The output of the CNN, a completed voxel grid of the object, goes114

through a post processing algorithm that returns a mesh model of the completed object. Finally, a115

grasp can be planned and executed based on the completed mesh model. Fig. 3 demonstrates the full116

runtime pipeline on a novel object never seen before. With our included tactile process we expand117

on this process by integrating an additional two steps which are described in section 4.118
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(a) Image of Occluded
Side

(b) Point Cloud (c) Segmented and
Meshed

(d) CNN Input

(e) CNN Output (f) Fast Mesh (g) Detailed Mesh (h) Grasp Planning

Figure 3: Stages to Shape Completion using vision data only. These images are not shown from the
angle in which the data was captured in order to visualize the occluded regions. (a): An object to
be grasped is placed in the scene. (b): A point cloud is captured. (c): The point cloud is segmented
and meshed. (d): A partial mesh is selected by the user and then voxelized and passed into the 3D
shape completion CNN. (e): The output of the CNN. (f): The resulting occupancy grid can be run
through a marching cubes algorithm to obtain a mesh quickly. (g): Or, for better results, the output
of the CNN can be combined with the observed point cloud and preprocessed for smoothness before
meshing. (h): Grasps are planned on the smoothed completed mesh. Note: this is a novel object not
seen by the CNN during training.

First a targeted point cloud is acquired using a Microsoft Kinect and segmented using PCL’s [25]119

implementation of Euclidian clustering. Then the partial mesh is completed using a CNN with a res-120

olution of 403 with an architecture as described in 3.2. The mesh is then smoothed using a marching121

cubes algorithm and then upscaled using a quadractic programming algorithm as described in [2].122

Finally a grasp is calculated using the Graspit! [22] software using the Barrett Hand model. The123

reachability of the planned grasps are checked using MoveIt![27] and the highest quality reachable124

grasp is then executed. For the purposes of this paper this last step has been omitted from our data125

collection step.126

3.4 Performance127

We created a test dataset by randomly sampling 50 training views (Training Views), 50 holdout128

views (Holdout Views), and 50 views of holdout models (Holdout Models). The Training Views and129

Holdout Views were sampled from the 14 YCB training objects. The Holdout Models were sampled130

from holdout YCB and Grasp Dataset objects. We used three metrics to compare the accuracy of the131

different completion methods: Jaccard similarity, Hausdorff distance, and geodesic divergence. We132

were able to show improvements over the partial and mirror methods by a significant margin. When133

comparing our shape completion method to a RANSAC based algorithm we were able to show our134

algorithm was more generalizable Jaccard (Ours: 0.771, RANSAC: 0.8566), Hausdorff (Ours: 3.6,135

RANSAC: 3.1), geodesic (Ours: 0.0867, RANSAC: 0.1245). Our approach significantly outper-136

forms the RANSAC approach when encountering an object that neither method has seen before137

(Holdout Models): Jaccard (Ours: 0.6496, RANSAC: 0.4063), Hausdorff (Ours: 5.9, RANSAC:138

20.4), geodesic (Ours: 0.1412, RANSAC: 0.4305). The RANSAC based approachs performance on139

the Holdout Models is also worse than that of the mirrored or partial completion methods on both140

the geodesic and Hausdorff metrics.141
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(a) Sampling of object

(b) Sampling around contact

Figure 4: To generate the
simulated tactile data we used
an approximation of the Bar-
rett hand’s geometry which in-
cluded finger offset as well as
rotation about the z-axis of the
camera frame. We then sample
around three suggested contact
points.

(a) Input (b) Ground Truth

(c) Depth Only Completion (d) Tactile + Depth Completion

Figure 5: Egg completion from the YCB and grasp database
holdout model set. It is hard to determine how far back the com-
pletion actually goes, and it is hard to differentiate what object
this is as the dataset contains both eggs and bowls. The Tactile
+ Depth Completion is better as it uses the tactile information
to alleviate both concerns.

Visual-Tactile 
Fusion CNN

Fused Depth + 
Tactile 

New Object 
Geometry 
Hypothesis

Voxelized 
Depth

Voxelized
Tactile

Figure 6: Both Tactile and Depth information are independently captured and voxelized into 403

grids. These are merged into a shared occupancy map which is fed into a CNN to produce a hypoth-
esis of the object’s geometry.

4 Visual-Tactile Geometric Reasoning for Robotic Grasping142

The results above provide a series of reasonable shape approximations using a CNN which is trained143

on a data set of partial views. However a CNN trained on depth alone is not able to account for full144

range of object geometry that cannot be viewed. To alleviate this, our solution is to add tactile data145

from tactile probing to the hypothesized shape completed model and generate a new more accurate146

model incorporating both visual and tactile information. To generate synthetic tactile data we used147

an approximation of the Barrett hand shown in Fig. 4. This model can then be used for grasp148

planning and manipulation. An overview of our sensory fusion architecture is shown in Fig. 6.149

4.1 Training150

The dataset consists of approximately half a million pairs of oriented voxel grids. Where one grid’s151

voxels are marked as occupied if visible to a camera, and the second grid’s voxels are marked152

as occupied if the object intersects a given voxel, independent of perspective. This dataset was153

augmented with tactile information either from a tactile grasp, or tactile exploration as shown in154

Fig. 10.155

We generated a series of simulated tactile points and combined these points in a 3D voxel grid with156

a partial view of a ground truth mesh as described in section 3.1. We stored these as a series of157
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(a) Image of Occluded
Side

(b) Point Cloud (c) Tactile info collected (d) Combined tactile and
depth

(e) CNN input (f) CNN output (g) Detailed Mesh

Figure 7: Stages to Shape Completion using vision and tactile data. These images are not shown
from the angle in which the data was captured in order to visualize the occluded regions. (a): An
object to be grasped is placed in the scene. (b): A point cloud is captured. (c): Tactile information is
collected. (d): Tactile information and depth information are merged into one point cloud. (e): The
input to the CNN. (f): The output of the CNN. (g): A smoothed mesh of the CNN output using the
marching cubes algorithm.

binvox files for the purposes of training a CNN. In order to generate the tactile points we found a158

set of three points by taking samples across the y-axis of the object in the -z direction. These three159

points were generated by taking rays through the 3D voxel grid and combining them with the partial160

view of the object as shown in Fig. 7.161

This provided information about up to three additional occupied voxels marking where each finger162

intersects the object. We then changed our runtime pipeline to incorporate the new tactile informa-163

tion as shown in Fig. 4. A good example of this additional benefit is shown in Fig. 5 where the164

network was able to complete the given egg voxel grid despite not seeing the back half of the object165

by incorporating the new tactile information. The tactile information allows the system to correctly166

predict how far back the completed object should extend and disambiguate between objects used in167

training that have similar depth maps but very different completions. Fig. 8 shows how completion168

quality improves as training progresses for two networks one trained using depth alone, and the169

second trained using depth and tactile information. It is interesting to note that difference in perfor-170

mance between the two networks is much larger on Holdout Models than on Train Views. This can171

be interpreted to mean that the additional tactile information is more useful on novel objects, while172

depth alone maybe sufficient for good completions if the object was used during training.173

5 Experimental Results174

In order to evaluate our system, it was first trained on a simple shape dataset. This dataset consisted175

of conjoined half shapes. Both front and back halves of the objects were randomly chosen to be176

either a sphere, cube, or diamond. The front and back halves do match in size. Several example177

shapes are shown in Fig. 9 (b) half cube half sphere and (d) half sphere half diamond. Next,178

synthetic sensory data was generated for these example shapes. Depth information was captured179

from a fixed camera location, and tactile information was collected using both a tactile exploration,180

and a tactile grasp. The sensory data for two shapes is shown in Fig. 9 (a) and (c) . Fig 10 shows the181

difference between the tactile grasp and tactile exploration.182
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Holdout Models; Tactile + Depth (max: 0.854)

Holdout Models; Depth (max: 0.830)

Figure 8: Jaccard similarity for two CNNs, one
(Red: Depth) trained with depth alone, the sec-
ond (Blue: Tactile + Depth) trained with tac-
tile and depth information. While training, the
CNNs were evaluated on inputs they were be-
ing trained on (Train Views) and novel inputs
from meshes they have never seen before (Hold-
out Models). In both evaluations the network
provided with both depth and tactile is able to
do a better job, this is especially true for Hold-
out Models demonstrated by the widened perfor-
mance gap between the two networks.

(a) (b)

(c) (d)

Figure 9: Example training pairs from simple
shape dataset. The red dots represent the tactile
readings from tactile exploration. The blue dots
on (a) and (c) represent to occupancy map gath-
ered from the depth image. The blue points in (b)
and (d) represent the ground truth 3d geometry.

Tactile Exploration Tactile Grasp

Figure 10: Red arrows show how the fingers ap-
proach the object for the tactile exploration case
and for the tactile grasp case. Blue dots show
points in the depth image captured by the cam-
era.
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Depth + Tactile Grasp (max: 0.987)
Tactile Grasp (max: 0.863)

Figure 11: Different runs of the shape comple-
tion system where input is provided from: Depth,
Depth and Tactile Exploration, Depth and Tac-
tile from Grasp, and only from a Tactile Grasp.
When using both tactile and grasp information,
the system is able to complete the object almost
100% of the time. While depth or tactile alone
are not sufficient to successfully reason about ob-
ject geometry in all cases.

Four networks with the exact same architecture were trained on this dataset using different sensory183

data as input. The results are shown in Fig. 11. One network was only provided the tactile grasp184

information during training, and performed poorly. A second network was given only the depth185

information during training, and performed better than the first network, but still encountered many186

situations where it did not have enough information to accurately complete the back half of the187

object. The other two networks were given the depth and tactile information. One in the form of188

a tactile grasp and the other from a tactile exploration. These networks were able to learn the task189

to completion. They successfully utilized the tactile information to differentiate between plausible190

geometries of occluded regions.191

5.1 YCB Live Hardware Experiments192

After demonstrating on the simple shape dataset, we trained two additional models using 486 of the193

grasp and YCB dataset objects, the remaining models were kept for a holdout set. One model was194

again trained using only the depth information, while a second model was trained using both depth195

and tactile information provide from a tactile exploration performed in a similar manner as with the196
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Figure 12: Jaccard similarity for two CNNs, one (shown in blue) trained with depth alone, the
second (green) trained with depth and tactile information. For each plot, while training, the CNNs
were evaluated on inputs they were being trained on (Training Views, plot a), novel inputs from
meshes they were trained on (Holdout Views, plot b) and novel inputs from meshes they have never
seen before (Holdout Models, plot c).

(a) Hand approach (b) Finger contact (c) Finger curl

Figure 13: Barrett hand showing contact with the object. The hand is first brought to the position
shown in a), followed by and approach as shown in b) and then the fingers are curled towards the
object to collect any additional tactile information in c).

simple shape dataset. We then used this model to complete the partial meshes of objects combined197

in tactile information acquired from the Barrett hand as shown in Fig. 13. This new methodology198

was tested on the Rubbermaid object from the YCB dataset. The network was able to correctly199

determine a handle on the back of the object as shown in Fig. 14. An explanatory video is available200

at https://rebrand.ly/visualtactilevideo.201

(a) Depth Front (b) Tactile Front (c) Depth Side (d) Tactile Side

Figure 14: a) and c) are both depth only completion which missed the handle on the reverse side of
the pitcher. b) and d) however were able to recreate a handle using the tactile information from the
robotic hand.

6 Conclusion202

We have developed an integrated system for shape modeling and geometric reasoning based upon203

machine learning from large data sets of 3D models. Both visual and tactile imagery were used to204

create a CNN that can merge single views of objects with sparse tactile data to create accurate and205

complete 3D models. The models, once completed, can then be used by a grasp planner to find206

suitable and stable grasps. Experimental results show that using both tactile data and vision data207

provides more accurate completed models than using either vision or tactile data alone.208
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