Quick Introduction to ROS

v

Installing Ubuntu
1 16.04

Quick and painless with Virtualbox

%% Open Virtualbox

Install Virtualbox
Download Ubuntu
16.04

Install to a USB
drive

-

o

Oracle VM tualBox Manager

File Machine Help

- e

MNew Settings

':§> - [&) petails % | 9 - Eﬁg -

Start - | Machine Tools | | Global Tools
=| General

Name. Ubuntu

Operating System: Ubuntu (64-bit)

[®] system

Base Memory: 1024 MB

Boot Order. Floppy, Optical, Hard
Disk

Acceleration: VT-x/AMD-V, Nested
Paging, KVM

Paravirtualization

=] Preview

Display

video Memory: 16 MB
Remote Desktop Server: Disabled
Video Capture: Disabled
[Z] storage

Controller: IDE
IDE Secondary Master: [Optical Drive] ubuntu-16.04.3-desktop-amd64.iso (1.48
GB)

Controller: SATA
{7 Audio]

Host Driver: PulseAudio
Controller: ICH ACS7

&P Network F

Time for a demo!

Let’s install Ubuntu on a USB drive.
I've uploaded a video of this to
Youtube here:
https://youtu.be/UGIOx2ZT_cl

https://docs.google.com/file/d/1rfzJYqeYn_kT8-q6tQIeApqxF5cpHT4x/preview

2 What is ROS?

Cetting started with the concepts

W

o9
% &j*
R

ROS is huge

ROS is an open-source, meta-operating system for
humanoid robots

5 What can ROS do?

Hardware abstraction

Low-level device control
Message passing between nodes
Sophisticated build environment
Libraries

Debugging and Visualization Tools

> What are the major concepts?

ROS packages
ROS messages
ROS nodes

ROS services

ROS action servers
ROS topics

...and many more!

5 What can ROS do?

Both based on ROS

Research development
- Fast prototyping easier in a simulated world

Transferring from simulated robot to real robot
takes a bit of effort

3 ROS Concepts

ROS is like HTTP but with extra steps

5 ROS Nodes

The ROS framework is component oriented

Each component is called a node
A node is a process
Nodes communicate through topics, services, and
actions

52 ROS as a framework

ROS Master —
sends/receives
ROS Network
Several nodes at once o taater
Whole network on your e
C O m p U te r Move Kinect2 Alexa Master
& = =

<giﬁ>="-]

52 ROS as a framework cont.

Kinect2 —

/klngth/l mages T

Publishes image ROS Master

MESSages e

What alre messa ges? Move Kinect2 Alexa Master
<=7 S E“"‘f., y & &

<giﬁ>="-]

File Panels Help . @ = Bl = =(005094%)) 356PM 3t

) Interact e Camera

I pisplays
Global Options
Fixed Frame kinect2_link
Background Color M 48: 48; 48
Frame Rate 30
Default Light

» v Global Status: Ok

' MotionPlanning
. PointCloud2
» v Status: Ok
Topic /kinect2/sd/points
Unreliable 1
Selectable
Style Flat Squares
Size (m) 0.01
Alpha
Decay Time
Position Transformer
Color Transformer
Queue Size
%° MarkerArray
@ Marker
%* MarkerArray
M TF
@ Marker
| Image
» v Status: Ok
Image Topic /kinect2/hd/image_color
Transport Hint raw
Queue Size 2
Unreliable

Image Topic
sensor_msgs:image topic to subscribe to.

Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Move Z. Shift: More options.

52 So what does this mean?

Hardware talks to drivers, which then talk to
nodes, which then talks to ROS

Nodes can run any software you want as long
as it is a language ROS supports

5> Topics

Each node can listen on or publish messages
to topics

- Built in message types (std_msgs)

- User defined messages

Complex.msg
float32 real
float32 imaginary

»> All ROS messages are viewable

david@kirintor:/opt/ros/kinetic/share/std_msgs/msg$ cat String.msg
string data

david@kirintor:/opt/ros/kinetic/share/std_msgs/msg$ }

5> Services

A node can provide services - synchronous
remote procedure calls

- Request

- Response

Add.srv #Example Service
float32 x
float32 y
- #Three dashes separate the request and response
Float32 result

52 Can view all ROS services

david@kirintor:/opt/ros/kinetic/share/std_srvs/srv$ 1s
Empty.srv SetBool.srv Trigger.srv
david@kirintor: /opt/ros/kinetic/share/std_srvs/srv$ cat Trigger.srv

bool success # indicate successful run of triggered service
string message # informational, e.g. for error messages
david@kirintor:/opt/ros/kinetic/share/std_srvs/srv$

%> Actions (actionlib)

Actions (asynchronous) are for long-running

Processes.
They have a Goal, Result, and Feedback
—Navigation.action #Example Action

float32 dest x
float32 dest y

boolean success # Result

uint32 percent_complete # Feedback

52 Can view all ROS actions

david@kirintor:/opt/ros/kinetic/share/actionlib/action$ cat TestRequest.action
TERMINATE_SUCCESS =
TERMINATE_ABORTED = 1
TERMINATE_REJECTED = 2
TERMINATE_LOSE = 3
TERMINATE_DROP = 4
TERMINATE_EXCEPTION = 5
terminate_status
bool ignore cancel # If true, ignores requests to cancel
string result_text
int32 the_result # Desired value for the_result in the Result
bool i1s_simple_client
duration delay_accept # Delays accepting the goal by this amount of time
duration delay_terminate # Delays terminating for this amount of time
duration pause_status # Pauses the status messages for this amount of time
int32 the_result
bool is_simple_server

> Packages

ROS software is organized into packages
- Each package contains some combination of
code, data, and documentation

package name/
package.xml
CMakelLists.txt
src/
scripts/
msg/
srv/
launch/

«— describes the package and it's dependencies

«— Finds other required packages and messages/services/actions
«— C++ source code for your node (includes go in include/ folder)
«— Python scripts for your node

«— ROS messages defined for your node (for topics)

«— ROS services defined for your node (for services)

«— The folder that contains .launch files for this packaae

5> Building /Running

Catkin is the official build system of ROS

- Catkin combines Cmake macros and Python scripts to provide
some functionality on top of Cmake’s normal workflow

Run ROS code

$ rosrun <package name> <script

$ roslaunch <package name> <launch file

Launch Files

Automate the launching of collections of ROS nodes
via XML files and roslaunch

example. launch:

name="talker" pkg="rospy tutorials"
type="talker.py" output="screen" />
name="listener" pkg="rospy tutorials"”
type="1listener.py" output="screen" />
>

$ roslaunch rospy tutorials example. launch

52 Launch Files

You can also pass parameters via launch files

>
name="gui" default="true"/>
= name="/use sim time" value="true" />
< file="$(find gazebo ros)/launch/
empty world.launch">
- < name="world name" value="worlds/willowgarage.world"
/>
< name="gui" value="$(arg gui)" />
</ P

file="$(find pr2 gazebo)/launch/pr2.launch"/>
< name="spawn table" pkg="gazebo ros" type="
spawn model"
args="-urdf -file $(find humanoids robots)/

pr2 _gazebo pick object/scenario/objects/table.urdf
-model table -x 2.15 -y 0.5"

respawn="false" output="screen" />

52 Command Line Tools

rosnode list
- rostopic list
rostopic echo

rosmsg show
rosservice
$ tf viewframes

5 Rviz: Robot Visualization

A e py——

Node Manager Fkie

1 control
updated: 14:11:18 (26 see)

T robot@tiderkod
V- control@tiderko
- {/telemax/control}

|—) Jteleman/joystick_cs

1 Jrelema joystick_interpreter_cs

- @ (telemax/gui)
@ Jtelemzy/cam_drive_view
— @ Jtelemay /decompressed_map
@ /relemar/decompressed_map_processed
@ /relemay/decompressed_map_scaled
- . Jrelemay Feature_elient_tiderke_5584_5832167201712697T17
@ Jrelemay jolnk_state_publisher_cs
@ Jtelema reconfigure_tiderko_5584_1303276752095762117
@ el bot_state_publisher_cs
@ Jreleman/rat_tiderko_5584_6471108328164293912

0 [relemay rviz_tiderko_5584_T924480385867804841
L@ /relemay/video_relay
~ 0 {telemax/gui_second}
- {/telemax/results)
- @ {sYSTEM}

@ /master_discovery
@ /master_sync
@ /node_manager
— @ /rosout

A ENE G

IEIEEER

I I o< |

EEE ENENENE]

5> Robots + ROS

Sensor Data

Joint Trajectories

<

Your ROS
Code
Here

5> Robots available - Fetch

Provides Data From (sensors):
- Depth camera
- Laser scanner
- Head camera
- Current Joint States

http://fetchrobotics.com/wp-content/uploads/2016/02/Fetch_spec_download_2016.pdf

http://fetchrobotics.com/wp-content/uploads/2016/02/Fetch_spec_download_2016.pdf

5> Robots available - PR2

Provides Data From (sensors):
- Kinect
- Two Laser Scanners
- Multiple Cameras (head and hand cameras)
- Fingertip pressure sensor arrays (gripper)
- Current Joint States

b— &

5> Robots available - Baxter

More cost-effective
Also has 2 arms
Stationary base

Sensors:

o Sonar

o Hand and head cameras
o Hand rangefinders

5> Robots in the wild - Problems

e | don't have a Robot in front of me
e | want to try something that may break

my Robot
e Setting up the Robot takes too much
time, | want to test changes to my code

quickly

5 Gazebo Simulator

Gazebo : default

Models

» pr2

+ plane1_model
» coke_can

» table_model

» coke_can_model

Property

Value

B®

o w ke oOW %4

Models | Lights Insert Model |

xvz: [2.63 | 035

| (209

RPY: |-0.00 | 4832 | [172.35 |

Real Time Factor: {0.89

J Sim Time: [19.98 hrs

‘ Real Time: |22.84 hrs J { Reset J

5 Gazebo Simulator

e Same interface as real Fetch, PR2 or
Baxter

e Add/remove items in environment

e Physics engine to simulate effects of
motor commands and provide updated
sensor feedback

5> Gazebo Demo

e Add object to world
o Physics
o Simulated Sensor Output Topics

$ roslaunch fetch gazebo playground. launch

> Moving the robot - TF

e A robotic system
typically has many 3D
coordinate frames that
change over time.

e tf keeps track of all
these frames over
time.

5> Moveit!

e (Civen:
o Current State of Arm
o Desired End Effector Pose
o Scene

® Returns:

o Trajectory to Move End Effector to
Desired Pose

5> Moveit! Demo

5> Moveit!

® Provides a common interface to several

different planners (mostly OMPL)
e Probabilistic Planners: will not return the
same path every time and may not even

find a path reliably.

% Moving the robot

e Several Interfaces:
o Base Motion Commands
o Gripper Commands
o Head Commands
o Movelt! for arm trajectories generation

X Graspit!

ke ﬁ pm @@ [} % |frictionl 2| I T B Barrett -/ mug
e GCrasp planner e

e |lots of robots and
objects

¢ A@EAIIE

\\\\\

X Graspit! Demo

o o oo \”nh 0N O

annerMug.xml
now Vvirtual contacts

now EGPlanner,

Energy functions

Simulated annealing

Contact quality, Potential quality
Semantics?

5> Debugging Tips

e Using Launch File

O output = “screen”
o Separate the specific node from launch and run
it using roslaunch or rosrun

e Use node_manager
e Check RVIZ to see if anything is wrong
e Command line commands like rosnode

etc can be very usetul

5> If you have a question

e Look in Tutorials:

o http://wiki.ros.org/ROS/Tutorials
Reference class slides/codes provided
Google it
http://answers.ros.org/questions/
Ask a TA

http://wiki.ros.org/ROS/Tutorials
http://answers.ros.org/questions/

X Some project tips

Cet going early.

Start from a simple prototype.

Seek help.

Several robot platforms available (Fetch,
PR2, and Baxter)

5 HWO, 1, and 2 are out

Submissions details:

- HWO - February 6%

- HWI1 - February 6"

- HW?2 - February 131
Demo for HW2 February 14"

