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What is “Simulation”?

- Narrow scope to robotics simulation
- Specifically looking at how the field creates a useful pipeline for enabling real 

world robotics
- Throughout this talk we will be discussing issues related to this pipeline and 

how to improve it
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Over 50K and 700 robot hours for 80% grasp accuracy
Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours

Pinto, L., & Gupta, A. (2016). Supersizing self-supervision: Learning to grasp from 50K tries and 700 robot hours. Proceedings - IEEE 
International Conference on Robotics and Automation, 2016–June, 3406–3413. http://doi.org/10.1109/ICRA.2016.7487517

This is not feasible for every robotic task
New methods in simulation can reduce real-world 

experiment time



4 workers and human assistance required to achieve simple tasks
Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates

Gu, S., Holly, E., Lillicrap, T., & Levine, S. (2017). Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In 
Proceedings - IEEE International Conference on Robotics and Automation (pp. 3389–3396). http://doi.org/10.1109/ICRA.2017.7989385

Faster than previous paper, but domain 
space is too small to generalize to all tasks 

and too expensive



Advantages and Shortcomings of Simulation

- Advantages
- Simulation allows for rapid iteration
- Can collect data substantially faster than in the real world
- No risk to expensive hardware
- Scalable across multiple machines

- Disadvantages
- Tradeoff between accuracy and speed
- Do not generalize well to real world problems
- Missing many sensory modalities
- High level APIs required for faster iteration in software development

- We can solve these disadvantages through domain randomization, newer 
physics simulators, and larger datasets that did not exist before



Choosing a Dataset



Real vs. Simulated Data

- Real data
- Allows simulation to have  higher realism
- Sensors for capturing data have become cheaper
- Time consuming to capture and annotate

- Why simulated data?
- Easier to randomize the domain of the dataset
- Can be much higher resolution than is supported by real world sensors
- Meshes can be too perfect when compared to real world data
- Some object geometries are not able to be simulated such fluids deformable objects



Example: Choosing a dataset for grasping
● Benchmarking in Manipulation Research : YCB Object and Model Set and Benchmarking Protocols
● ShapeNet: An Information-Rich 3D Model Repository
● Jacquard: A Large Scale Dataset for Robotic Grasp Detection
● Leveraging big data for grasp planning

- Need high fidelity dataset with diverse examples
- Dataset needs to be related to the problem: kitchen vs. home vs. industrial
- For grasping, four datasets are immediately relevant:

ShapeNet

51,300 unique 3D models
55 object categories

Simulated
Textured

YCB

77 unique 3D models
5 object categories

Real
Textured

GRASP

280 unique 3D 
models

87 object categories
Simulated
Untextured

Jacquard

240 unique 3D models
8019 hand-labeled grasp 

rectangles
Real

Textured
Calli, B., Walsman, A., Member, S., Singh, A., Member, S., Srinivasa, S., … Member, S. (n.d.). Benchmarking in Manipulation Research : The YCB Object and Model Set and 
Benchmarking Protocols.
Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., … Yu, F. (2015). ShapeNet: An Information-Rich 3D Model Repository. 
http://doi.org/10.1145/3005274.3005291
Depierre, A., Dellandréa, E., & Chen, L. (2018). Jacquard: A Large Scale Dataset for Robotic Grasp Detection, 2–7. Retrieved from http://arxiv.org/abs/1803.11469
Kappler, Daniel, Jeannette Bohg, and Stefan Schaal. "Leveraging big data for grasp planning." 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 
2015.

http://arxiv.org/abs/1803.11469


Example: Choosing a dataset for navigation
● 3D Semantic Parsing of Large-Scale Indoor Spaces (Stanford 2D-3D-S)
● Matterport3D : Learning from RGB-D Data in Indoor Environments
● Semantic Scene Completion from a Single Depth Image (SUNCG)

Stanford 2D-3D-S

Matterport3D

10,800 panoramic views from 
194,400 RGB-D images of 90 

building-scale scenes
40 object categories

Real

SUNCG

45,622 houses with 775,574 rooms
2644 unique  object meshes covering 84 categories

Synthetic

6 Areas
Over 70,000 RGB images

13 object categories
Real

Stanford 2D-3D-S

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer, M., & Savarese, S. (2016). 3D Semantic Parsing of Large-Scale Indoor Spaces. 2016 IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR), 1534–1543. http://doi.org/10.1109/CVPR.2016.170
Chang, A., Dai, A., Funkhouser, T., Savva, M., & Song, S. (n.d.). Matterport3D : Learning from RGB-D Data in Indoor Environments.
Song, S., Yu, F., Zeng, A., Chang, A. X., Savva, M., & Funkhouser, T. (2016). Semantic Scene Completion from a Single Depth Image, 1746–1754. http://doi.org/10.1109/CVPR.2017.28

http://doi.org/10.1109/CVPR.2016.170


Example: Dataset for UAV simulation
A benchmark and simulator for UAV tracking

Mueller, M., Smith, N., & Ghanem, B. (2016). A benchmark and simulator for UAV tracking. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture 
Notes in Bioinformatics), 9905 LNCS, 445–461. http://doi.org/10.1007/978-3-319-46448-0_27

Provided with a benchmarking 
system and video dataset

123 Sequences, 110K frames

Bounding box and attribute 
annotation per frame

Compared four tracking 
algorithms as initial benchmark 

for accuracy of bounding box and 
success 

STRUCK, MEEM, SAMF, SRDCF

Accurate real world drone data 
for training in simulationUAV123



Human in the Loop

- How do we receive optimal training data?
- We can incorporate data from human operators into our training pipeline

- Human centered reinforcement learning (HCRL)

- Collecting valid samples can be performed by: 
- Virtual reality teleoperated sessions
- Mass consensus through mechanical turk
- Having a human operator perform the task correctly

Reinforcement 
Learning

Learning from 
Human 

Evaluation

Learning from 
Human 

Evaluation

Learning from 
Human 

Demonstration



ROS Reality: collecting data in VR
Comparing Robot Grasping Teleoperation across Desktop and Virtual Reality with ROS Reality

- Using remote teleoperation we can 
collect correct action sequences from 
a human operator

- Potential latency issues
- Allows for global data collection 
- Currently reduced action space
- VR allows for collecting ground 

truth data remotely using 
real/simulated robots

Whitney, D., Rosen, E., Phillips, E., Konidaris, G., & Tellex, S. (2017). Comparing Robot Grasping Teleoperation across Desktop and Virtual Reality with ROS Reality. International Symposium on 
Robotics Research, 1–16. http://doi.org/10.4103/1817-1737.56008



Crowdsourcing RL Data
ROBOTURK: A Crowdsourcing Platform for Robotic Skill Learning through Imitation

- Rapid crowdsourcing
- Allows for global data collection 
- VR controller, phone, keyboard, and 

3D mouse input options
- We can collect ground truth data 

from people faster than ever

Mandlekar, A., Zhu, Y., Garg, A., Booher, J., Spero, M., Tung, A., … Fei-Fei, L. (2018). ROBOTURK: A Crowdsourcing Platform for Robotic Skill Learning through Imitation, (CoRL). Retrieved from 
http://vision.stanford.edu/pdf/mandlekar2018corl.pdf



Physics Simulators



Current physics backends

Bullet



Comparison of different physics backends*

Bullet ODE MuJoCo DART Gazebo
Initial release 2006 2001 2015 2012 2004

Author E. Coumans R. Smith E. Todorov J. Lee et al N. Koenig
Language C / C++ C++ C C++ C/C++

API C++ / Python C C C++ C++/ROS
Contacts Hard/Soft Hard/Soft Soft Hard N/A

Solver MLCP LCP
Newton / PGS / 

CG LCP N/A

Integrator
Semi-implicit 

Euler
Semi-implicit 

Euler
Semi-implicit 
Euler / RK4

Semi-implicit 
Euler N/A

*https://leggedrobotics.github.io/SimBenchmark/



SimBenchmark Test

- Rolling test: friction model test
- Bouncing test: single-body elastic collision test
- 666 balls test: single-body hard contact test
- Elastic 666 balls test: single-body energy test
- ANYmal PD control test: articulated-robot-system speed test for quadrupedal 

robot
- ANYmal momentum test: articulated-robot-system momentum test
- ANYmal energy test: articulated-robot-system energy test



Example 666 Test



SimBenchmark Overall Results

● more + is better
● +: best results
● -: cannot simulate due to inaccurate model or excepted



● DART's simulation pipeline is not suitable for simulation scenes with many 
objects - Very slow

● Bullet has severe position level drift without the post-solver error correcting 
method

● MuJoCo's soft contact model cannot control elasticity of contact.
● MuJoCo has consistent slip which requires additional post-process for legged 

robot simulation

- Each simulator architecture has its own tradeoffs and needs to be 
evaluated for the problem at hand

Physics backend benchmark
SimBenchmark

*https://leggedrobotics.github.io/SimBenchmark/



Soft body physics simulation: SOFA
Framework for online simulation of soft robots with optimization-based inverse mode

Duriez, C., Coevoet, E., Largilliere, F., Morales-Bieze, T., Zhang, Z., Sanz-Lopez, M., … Dequidt, J. (2017). Framework for online simulation of soft robots with optimization-based inverse model. 2016 
IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots, SIMPAR 2016, 111–118. https://doi.org/10.1109/SIMPAR.2016.7862384

● Soft body actuation of materials
● Complex geometry can be slow but it is 

accurate
● Lack of accuracy metrics - all qualitative
● Close source plugin for open source 

simulation framework
● Simulation of soft-body physics is 

now possible - however lacking 
integration



Domain Specific Simulators
OpenRAVE : A Planning Architecture for Autonomous Robotics
Graspit: A versatile simulator for robotic grasping

- For grasping and trajectory planning
- GraspIt! Is a flexible grasping 

framework
- OpenRave is a flexible trajectory 

planning framework
- Simulating trajectories and grasps 

makes real world grasp planning 
feasible

Diankov, R., & Kuffner, J. (2008). OpenRAVE : A Planning Architecture for Autonomous Robotics. Tech. Rep. CMU-RI-TR-08-34, Robotics Institute, (July). http://doi.org/CMU-RI-TR-08-34
Miller, A. T., & Allen, P. K. (2004). Graspit: A versatile simulator for robotic grasping. IEEE Robotics and Automation Magazine, 11(4), 110–122. http://doi.org/10.1109/MRA.2004.1371616

http://doi.org/CMU-RI-TR-08-34


Simulator and high level APIs
Gibson Env : Real-World Perception for Embodied Agents
MINOS : Multimodal Indoor Simulator
Habitat: A Platform for Embodied AI Research

Gibson

Xia, F., & Sax, A. (n.d.). Gibson Env : Real-World Perception for Embodied Agents.
Savva, M., Chang, A. X., Dosovitskiy, A., & Funkhouser, T. (n.d.). MINOS : Multimodal Indoor Simulator, 1–14.
Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wijmans, E., Jain, B., … Batra, D. (2019). Habitat: A Platform for Embodied AI Research. Retrieved from http://arxiv.org/abs/1904.01201

Produced in 2018
Support for 

Matterport3D/Stanford 2D3DS
512x512 resolution

Produced in 2017
Support for 

Matterport3D/SUNCG
Arbitrary resolution

Produced by Facebook in 2019
Support for Matterport3D/SUNCG

10K fps
512x512 resolution

High level APIs are new and allow for 
simulating RL and data collection tasks 

easier than before



Transferring agents to real-world: Gibson
Gibson Env : Real-World Perception for Embodied Agents

- Imperfections in rendering can 
make it difficult to get 
photo-realistic images

- Training a network structure to 
map simulated image onto real 
world image

- Provided with open source 
implementation

- We can transfer the style of 
simulated views onto realistic 
images

Xia, F., & Sax, A. (n.d.). Gibson Env : Real-World Perception for Embodied Agents.



Vehicle/Drone Simulation: Airsim
AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles

- Drone simulation is done using 
Airsim

- Allows for real-time simulation of 
drones and cars

- Synthetic data from games in the 
unreal engine

- Plans to use PhysX in the future 
but uses Unreal Engine for now

Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2017). AirSim: High-Fidelity Visual and Physical Simulation for Autonomous Vehicles, 1–14. http://doi.org/10.1007/978-3-319-67361-5_40



Deep learning speeds 
up simulation



Learned Simulators

- Modern advancements in deep learning have allowed for the creation of 
learned representations of world models

- Learned engines allow for faster simulation of world mechanics and often can 
offer more accuracy in the simulated result if the training data is derived from 
the ultimate medium the agent will be acting in 

- We can speedup our simulation pipelines



- Map the action and state of simulator onto an 
RNN architecture

- An agent controls an avatar in a video game 
capturing the state and action of each frame

- Allows for rapid learning in approximated 
physics environment

- Tested specifically with Doom
- Learned simulation model is faster than 

running the simulation itself

Learned simulator representations can allow for faster 
learning: World Models

Ha, D., & Schmidhuber, J. (2018). World Models. http://doi.org/10.5281/zenodo.1207631



Differentiable physics engines allow for 
faster learning
A Differentiable Physics Engine for Deep Learning in Robotics,

- Textures, bodies, and state are all 
differentiable 

- Integrated in either forward or 
backwards propagation 

- Textures, physics, state can be 
integrated into the reward function 
of simulations

Degrave, J., Hermans, M., Dambre, J., & wyffels, F. (2016). A Differentiable Physics Engine for Deep Learning in Robotics, 13(March), 1–9. http://doi.org/10.3389/fnbot.2019.00006



Deep Tamer: Using limited human trials reduces 
training time

● Using few human actions to decrease training time
● Training time in 15 minutes of data vs similar agents
● Exceeds human operator in 7 minutes of training
● We can reduce time spent simulating by using human-in-the-loop 

ground truth data for deep learned agents

Warnell, G., Waytowich, N., Lawhern, V., & Stone, P. (2017). Deep TAMER: Interactive Agent Shaping in High-Dimensional State Spaces. Retrieved from http://arxiv.org/abs/1709.10163



Sensory Modalities

- Physics engines have certain sensory modalities pre-programmed in
- All have some form of RGB rendering scheme
- Less common

- Depth rendering
- Semantic labeling
- Tactile
- Accurate force models
- Sound
- Human in the loop

- Lacking sensory modalities does not mean a simulator is unusable but is a 
tradeoff that must be considered



Improving sim-to-real fidelity



GANs allow for better grasp generalization
Domain Randomization and Generative Models for Robotic Grasping

Tobin, J., Biewald, L., Duan, R., Andrychowicz, M., Handa, A., Kumar, V., … Abbeel, P. (2017). Domain Randomization and Generative Models for Robotic Grasping. 
http://doi.org/10.1017/CBO9781107415324.004

- Train model to generate models based on YCB object dataset
- Trained grasp planner in simulation on generated synthetic objects
- Generating objects based on a real-world dataset gives us more data 

to train another network or test an existing pipeline with



Photorealistic video synthesis improves sim-to-real
Video-to-Video Synthesis

Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Liu, G., Tao, A., Kautz, J., & Catanzaro, B. (2018). Video-to-Video Synthesis, 1–14. http://doi.org/arXiv:1808.06601v1

● 2048x1024 photorealistic 
video-to-video translation using GANs

● It can be used for turning semantic 
label maps into photo-realistic videos, 
synthesizing people talking from edge 
maps, or generating human motions 
from poses

● Using simulated datasets we can 
perform style transfer for relevant task 
datasets

● Transferring style based solely on 
semantic labels lets us map 
simulated data to real data 



More synthesized data means better models
High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs

Corporation, T.-C. W. M.-Y. L. J.-Y. Z. A. T. J. K. B. C. NVIDIA, & Berkeley, UC. (2017). High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs. ACM Transactions on 
Speech and Language Processing, 8(2), 1–18. http://doi.org/10.1145/2050100.2050101

● 2048x1024 photorealistic 
video-to-video translation using GANs

● Similar to video-to-video synthesis but 
also allows for editing of style

● Using simulated datasets we can 
perform style transfer for relevant task 
datasets

● Transferring style based solely on 
semantic labels lets us map 
simulated data to real data 

● New User Interfaces make domain 
mapping easier



Examples of Robotic 
Simulation Pipelines



CAD2RL: Utilizing drone simulation for automated 
flight navigation

- Real Single-Image Flight without a Single Real Image - synthetic images
- Drone simulation detects collision with objects
- Environment has randomized textures for scenes
- Translated onto a real drone flying through an environment
- We can train a navigation task for a drone in simulation

Sadeghi, F., & Levine, S. (2016). CAD2RL: Real Single-Image Flight without a Single Real Image. http://doi.org/10.15607/RSS.2017.XIII.034



Using pose detection enhances grasp planning via 
ground truth mesh models
Collaborative grasp planning with multiple object representations

Brook, P., Ciocarlie, M., & Hsiao, K. (2011). Collaborative grasp planning with multiple object representations. Proceedings - IEEE International Conference on Robotics and Automation, 2851–2858. 
http://doi.org/10.1109/ICRA.2011.5980490

● Great example of real-to-sim-to-real 
pipeline for grasping task

● 25 household objects were used in 
generation of grasps - 45 extra 3D 
models

● Uses pose detection model and then 
simulated annealing in GraspIt! for 
grasp planning



Simulation of deformable objects aids in planning folding tasks
Folding Deformable Objects using Predictive Simulation and Trajectory Optimization

Li, Y., Yue, Y., Xu, D., Grinspun, E., & Allen, P. K. (2015). Folding Deformable Objects using Predictive Simulation and Trajectory Optimization, 6000–6006.

● Great example of real-to-sim-to-real 
pipeline for folding task

● Approximated geometry of clothes using 
2D image

● Used maya for mesh simulation
● Folding actions were successful for 

optimal clothing placement



Using simulated object renderings transfers better into the 
real world
Multi-Modal Geometric Learning for Grasping and Manipulation

Varley, J., Watkins-Valls, D., & Allen, P. (2018). Multi-Modal Geometric Learning for Grasping and Manipulation. http://doi.org/arXiv:1803.07671v2

Grasping was enabled through simulated point 
cloud acquisition

Synthetic tactile points were collected

Use of the YCB and GRASP datasets

Great example of real-to-sim-to-real 
pipeline with multiple sensory modalities



Learning Dexterous In-Hand Manipulation: Reducing the 
domain of the task in simulation allows for better transfer

OpenAI, :, Andrychowicz, M., Baker, B., Chociej, M., Jozefowicz, R., … Zaremba, W. (2018). Learning Dexterous In-Hand Manipulation, 1–27. http://doi.org/arXiv:1808.00177v2

● Reducing the domain complexity of 
the task allowed for easy transfer of 
the action onto the real world

● Shadow hand model in simulation 
was accurate

● By reducing the domain you can 
decrease training time and have 
a higher likelihood of mapping to 
real-world



Using action primitives allows for better transfer onto the real world
Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for 
Contact-Rich Tasks

Lee, M. A., Zhu, Y., Srinivasan, K., Shah, P., Savarese, S., Fei-Fei, L., … Bohg, J. (2018). Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich 
Tasks. http://doi.org/arXiv:1810.10191v1

Action primitives are reaching, 
alignment, and insertion

Stated in paper that they would 
like to integrate more complex 
tasks

Using action primitives makes it 
easier to generalize to the real 
world



Using modular object detection and grasping priors allows for better 
real world transfer
Zero-shot Sim-to-Real Transfer with Modular Priors

Lee, R., Mou, S., Dasagi, V., Bruce, J., Leitner, J., & Sünderhauf, N. (2018). Zero-shot Sim-to-Real Transfer with Modular Priors. Retrieved from http://arxiv.org/abs/1809.07480

Simple manipulation task and sorting 
tasks

Pre-trained object detector 

Deep sets encoder that enables 
reinforcement learning - effectively 
reducing domain space

Modular systems make 
real-to-sim-to-real more effective



Looking Ahead

- We need better ways of simulating soft body robots
- SOFA is a closed source solution but open source likely soon

- Need larger datasets of real world scenes applicable to robotics
- Matterport3D is good for home based navigation tasks, but there are many more complex 

environments that are difficult to simulate

- High level APIs need to be more accessible
- Habitat-Sim is a step in the right direction which is endorsed by Facebook



Looking Ahead

- VR integration into frameworks is in production now
- PyBullet is developing a plugin for VR
- Unity has support for VR

- ROS 2 and MoveIt! 1.0
- Solving simulator integration into deep learning tasks and generalizing API better than before

- Better domain randomization
- Better and easier to use APIs for simulation e.g. OpenAI
- Industry support is increasing for simulators

- Facebook and Habitat Sim
- Microsoft and ROS/Gazebo



Looking Ahead

- Creating custom sensory modalities is easier than it was before
- GANs and domain randomization produce larger datasets
- Using deep learning for speeding up networks is very new and should be 

researched further



Synthetic domain randomized object segmentation 
translates onto real world grasping tasks

Shao, L., Tian, Y., & Bohg, J. (2018). ClusterNet: 3D Instance Segmentation in RGB-D Images, (1). http://doi.org/arXiv:1807.08894v2

Grasping was enabled through 
synthetic cloud generation

Segmentation was free given 
models in simulation

Able to cluster objects using their 
COM



UAV Tracking Algorithms: Spatially regularized 
correlation filters for visual tracking (SRDCF)



Visual Tracker Benchmark (OTB50)



MEEM: Robust Tracking via Multiple Experts using 
Entropy Minimization



A Scale Adaptive Kernel Correlation Filter Tracker 
with Feature Integration (SAMF)

- Tracker based on the correlation filter framework
- Adaptive scale of filtering to track objects Moreover, the powerful features 

including HoG and color-naming are integrated together to further boost the 
overall tracking performance. 

- Our method successfully tracked the targets in about 72% videos and 
outperformed the state-of-the-art trackers on the benchmark dataset with 51 
sequences



Struck: Structured Output Tracking with Kernels



LCP: Linear Complementarity Problem



MLCP: Mixed Linear Complementarity Problem

- Same principle as MLCP but allows for both of the variables to be free
- Global LCP solvers can work, but not global linear solvers, if LCPs are mixed 

into the system. A mixed-linear complementary problem (MLCP) is a system 
of both linear and complementary problems.



Projected Gauss–Seidel method (PGS)

 (PGS



Semi-implicit Euler




