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Learning from Electromyography Synergies to Grasp Novel Objects by Superquadric Representation
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f is an encoder function that maps x to space of synergies

g is a decoder function that maps h back to the original dimension

g(f(x)) is an approximation of x

Encoding human grasps collected from the Ctrl-Labs' EMG device in a latent space
will effectively extract synergies. Grasps of the same type should be clustered in the
lower dimensional space to allow for the sampling of a grasp with given type and
object geometry. This is not possible when applying principle component analysis
(PCA). A deep autoencoder approach has been shown to perform extremely well.

REINFORCEMENT LEARNING ENVIRONMENT

Inverse Kinematics

Forward Kinematics

A reinforcement learning environment
simulating a robotic arm-hand unit with
artificial contact forces was developed
using PyBullet. In particular, the robot is
introduced to table top objects of varying
size and geometry by superquadric
representation. The scenes on the right
demonstrate the end-effector keeping a
constant distance from the sphere.
Although the hand has 18 joints, only 5 are
fully-actuated. An empirically estimated
linear relationship models all other joints
as a proportion of these 5.

Moving the end-effector to a given hand
pose requires computing the joint
angles of the arm.

Computing the amount of contact
between the hand and object requires
poses of both bodies. Forward
kinematics will compute the Cartesian
fingertip positions as a function of the
joint angles of the arm and hand.

GRASPING WITH DEEP Q-LEARNING
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Reward Structure
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It consists of moving the joint angles by
an angle of 0.01 radians.

e: distance of the hand from the object
c: number of contact points
d: success of the grasp

The reward is given to the agent piece-
wise. Because the reward at a successful
grasp tends to be sparse, intermediate
rewards discourage the robot from
moving away and incentivize contact
between the hand and the object.

We implemented Policy Gradient and
Deep Q Learning Algorithms. We used
Neural Networks for training since they
were the state of the art algorithms for
Robotics.

The motion of a robotic end-effector
either operates in cartesian space or
configuration space. Restricting the state
space size of the arm becomes difficult
under the assumption that it can reach
any position and orientation. Controlling
the joint angles of the arm however,
constraints the possible hand poses
because no joint can move beyond its
lower and upper limits. Therefore, the
hand and arm states are a vector of joint
angles.

RESULTS

SIMULATION TO REALITY
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Introducing a prior of a stable grasp to the network pushes the robotic hand to pick
up objects far more quickly than otherwise. As the first two scenes exhibit above, the
hand will only learn to touch the object rather than lift it up as a result of rewarding
high contact points. Nonetheless, the agent eventually succeeds at performing an
anthropomorphic grasp of arbitrary objects.
Results below demonstrate the importance of choosing initial parameters to an RL
policy. Motivated by this observation, collecting more samples of human grasps will
ultimately improve learning and transferring from simulation to reality.

The robot trained in
simulation is capable of
executing the learned
policy in experiment. The
tabletop scene portrays
the handmoving toward a
cube to perform a grasp.

Simulation uses a database of superquadrics with their preferred grasps. In
experiment, superquadrics are fitted to a 3D point cloud of table top objects to
sample an appropriate starting grasp for the learned policy.

The objective is to learn grasp synergies with high fidelity given object pose and
geometry. However, under-actuated, anthropomorphic hands require complex, high
dimensional control strategies. Including object pose and geometry further increase
the size of the state space. Therefore, grasping in unstructured environments in the
same fashion as humans proves to be non-trivial.

Object geometry was parametrized with the model of a superquadric. Varying these
parameters generated a set of points lying on the surface of the respective object.
After sampling a sufficient amount of points, Poisson reconstruction was used to
generate a databases of unseen object meshes for training in simulation.

OBJECT GEOMETRY PARAMETRIZATION


