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1.1 Introduction

In 1950, Turing proposed the Imitation Game as a test for intelligence. He
predicted that in 50 years’ time, there would exist a computer that could outper-
form humans in the Imitation Game. The criteria for success is that a computer
emitting written language can fool humans more than 70% of the time. In
2023, LLMs such as GPT-4 and Jurassic-2 have more or less met this crite-
ria (AI21 2023). For example, ChatGPT can easily respond to one of Turing’s
questions and write a sonnet about the Forth Bridge (Figure 1.1). It is clear that
the super-human ability to process the entire Internet into a deep neural net-
work can create a computer program that can pass many aspects of the Turing
test.

Turing explicitly scoped his test to be disembodied; in contrast, we focus
on embodied systems, which we define as a computational agent embed-
ded in space and time, with high-dimensional continuous sensor input, and
high-dimensional continuous motor output. Turing first proposed disembodied
language as a test for what it means to be intelligent because the power (and ter-
ror) of language is that it can connect to every aspect of an intelligent system,
and thus he believed it was a sufficient condition to demonstrate intelligence.

Yet he was wrong: despite the ability of large language models like GPT
to write sonnets more quickly and easily than any human, we claim, along
with many others, that they are not truly intelligent (Srivastava et al. 2023).
When defining intelligence, we seek something more integrative, something
that spans the broad spectrum of capabilities exhibited by human intelligence.
And it is now clear that language itself is one of those capabilities. Just as
calculators can do math faster than a human, we now have “calculators” such as
ChatGPT that can write sonnets faster. Turing’s hypothesis that language was
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Upon the Firth, where waves in rhythm glide,
A marvel stands, in grandeur unconfined.

Its steel embraces winds, a timeless guide,

A testament to human craft and mind.

With spans that stretch o’er waters deep and wide,
It spans the gap where the earth and sky align.

In arcs of strength, its form does proudly stride,
Defying age, a beacon that will shine.

In days of yore, when steam and sweat combined,
Bold engineers conceived its towering frame.
Their vision etched in every bolt, each line,

A monument to courage, not to fame.

So let us praise the Forth Bridge’s might,
A symbol of mankind’s relentless flight.

Figure 1.1

ChatGPT’s response to Turing’s prompt, “Please write me a sonnet on the subject of
the Forth Bridge.” In Turing’s original dialog, the competitor refused to do this task
because they “never could write poetry.”

a sufficient test for an intelligent machine is false: we claim that that language
on its own is neither necessary nor sufficient for intelligence.

Something is still missing from our programs. Brooks (1990) memorably
pointed out that elephants do not play chess, and they do not write sonnets
either. Many aspects of intelligence that are present in animals are not captured
by the Turing Test. Specifically, we claim that what is missing is embodiment:
our programs must be robots, agents embodied in space and time with high-
dimensional sensor input and high-dimensional motor outputs. For example,
Figure 1.2 shows a crow filling a cup of water with rocks so it can drink the
water. We consider this behavior intelligent even though a crow cannot use
human language.

Why, then, should we study language? Language is about the world; lan-
guage is situated in space and time. Fundamentally, humans use language to
talk about what they perceive, believe, and do. Human language is unique in
the universe (so far as we know) for its ability to compose novel sentences that
have never previously been uttered or thought by any person before. We can
also change our topic of conversation from things directly in front of us, like
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Figure 1.2

A crow drops rocks into a tube of water so that it can drink the water. Recognizing
the displacement of water, that there is a boundary to itself when interacting with the
physical world, and requiring temporal actions to accomplish something in the future
are all attributes of intelligence not captured in the original Turing test. Image from the
Audubon (Saha 2023).

“pick up the speck of dust off the floor” to abstract discussions of philosophy
such this chapter. Because of the universality and power of language, Turing
proposed it as a medium through which to conduct a test for intelligence.

While human language is not necessary for an intelligent agent (as estab-
lished by the existence of elephants, rats, and crows), it is still a means of
peering into the mind. Human language is a powerful way to penetrate the veil
of the skull, building on the mental substrate that exists in humans to create
a powerful and flexible framework that spans sounds, written words, gestures,
posture, and simply being in a physical spot at a specific time. Language pro-
vides a unique window into human cognition because it can connect to all
aspects of a cognitive agent.

More generally, language is a means of communication in the information-
theoretical sense as defined by Shannon (1948). A bird calling to its flock, a
horse moving around in its herd, and even RNA codons all form languages
because they exist in space-time and have a cause-and-effect relationship with
other entities. For example, horses establish and communicate a hierarchy
within their herds through movement towards and away from other horses and
resources (Ransom and Cade 2009). Harnad (1990) formalized this intuition as
the symbol grounding problem, pointing out that words refer to things in the
external world.

This chapter proposes to use language and communicative actions to formu-
late a new benchmark for intelligence, a grounded Turing Test. If we think of
communicative acts and language as the debugging print statement for intel-
ligent creatures, we can enumerate the different kinds of ways language is
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used, e.g., interpreting instructions, statements about the world, and informa-
tion about mental states, delivering information, asking for help, and answering
questions. An embodied agent that can use language in all of these ways passes
the test, and we claim this is a sufficient (but not necessary) condition for
intelligence. In this chapter we review all of these ways of using language
along with technical approaches that address these ways of using language.
Our field’s grand research challenge is to bring them together into one system,
embedded in an agent with high-dimensional input and output in the physical
world.

1.2 What Is Intelligence?

As roboticists, we frame the problem of intelligent behavior as an agent that
interacts with the world in a goal-directed way with high-bandwidth input from
sensors and high-bandwidth output through actuators. To act in a goal-based
way, the agent needs 1) the ability to process high-framerate information from
the environment such as vision, tactile information, audio etc. 2) the abil-
ity to respond through its actuators in ways that achieve its goals over time.
This embedding in space-time with long-term goal-directed behavior is essen-
tial for what we mean by intelligence. For mammalian biological embodied
agents, such as humans, the lowest level substrate for acting on the world is
through muscle movements. Robotic systems have a completely different set
of actuators that can affect the world, for example LEDs, motors, and speak-
ers. Ultimately, they all necessitate high-framerate interaction with the world
to produce goal-directed behavior in their changing environment. This forms
a hierarchy of communication that allows embodied agents to communicate
their internal state, as shown in Figure 1.3.

Brooks (1990) pointed out that elephants do not play chess; similarly, we
consider elephants intelligent even though they do not use human language.
The elephant makes plans; the elephant has goals; the elephant engages in
goal-directed behavior in the physical world. Dennett (1989) pointed out that
in this situation we can ascribe intentions and goals even to a fly, which may
be doing very bounded and well-defined computation as it moves through the
world. In approaching the question of what is intelligence, we are like the four
blind men and the elephant. In the story, four blind men approach an elephant
from different angles, and each one describes it differently, as a snake, a fan,
a tree trunk, a spear. Our position is that intelligence is all of these things at
once, and an intelligent agent must exhibit multiple behaviors embedded in
space and time to pass our test.

Others have observed that intelligence does not require language and have
proposed extensions to the Turing Test to account for this fact. Straightforward
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extensions to the Turing test to embodied agents (Zador et al. 2023) lead to
attempts to cross the uncanny valley, such as Gemanoid (Nishio, Ishiguro, and
Hagita 2007; Leshchev 2021), again sidestepping what we mean by intelli-
gence. Harnad (1991) proposed the Total Turing Test, and Schweizer (1998)
extended it to the Truly Total Turing Test, focusing on both linguistic and phys-
ical behavior. Our approach falls within this family, but we specify the sorts of
linguistic and robotic behavior that must be displayed by the system. Zador
et al. (2023) define an embodied Turing test in terms of animal behavior; for
example, an embodied Turing test for a beaver tests the beaver’s ability to
build a dam. They point out that animals 1) engage their environments, 2)
behave flexibly, and 3) compute efficiently. Our framework is a form of an
embodied Turing test because it is essential that an agent is grounded in the
physical environment. However, the specific physical behavior, such as build-
ing a dam, is not the point; rather, we employ language grounding—the ability
of an agent to connect words to perceptions and actions in the world—as a win-
dow into the agent’s abilities to take action, leading to a test that is independent
of a specific physical embodiment, even though it requires one. Srivastava et
al. (2023), in contrast, proposes a text-based, non-embodied extension to the
Turing test, called the Beyond the Imitation Game Benchmark (BIG-bench),
designed for the age of large language models. BIG-bench consists of 204
text-based tasks from a diverse array of domains ranging from linguistics to
biology to common-sense reasoning. Current LLMs perform poorly on these
tasks in an absolute sense; although performance improves with model size,
it is nowhere near the level of human raters (Mirzadeh et al. 2024). But even
if (when!) models pass these benchmarks, we argue that because the resulting
model will not be embedded in high-dimensional space-time with goal-based
behavior, we should not consider it intelligent.

1.3 The Grounded Turing Test

In this section we enumerate the ways language can be used by an intelligent
robot, and then describe the research problems inherent to each. We define
a test that is sufficient for establishing the agent is intelligent: To pass the
grounded Turing test, a system must support all of these capabilities rather than
any single one. In addition, we make no claims that passing our test is neces-
sary for intelligence; like the elephant, it is not necessary to use language to
be intelligent, as shown in Figure 1.3. We follow the breakdown in our survey
paper (Tellex et al. 2020) and first consider an agent responding to informa-
tion provided by a person, then an agent providing information to a person in
response to their questions, and finally a fluid collaborative dialog as described
by Clark (1996). Much existing work in the field follows this breakdown into
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Figure 1.3

The x-axis describes the artificiality of the system and the y-axis describes the levels of
abstraction the entity has. The capacity for abstraction happens at many layers of phys-
icality, whether for an atom, a gene, an elephant, or a human. In parallel, disembodied
abstractions show up in the form of decision trees (Devlin et al. 2019) or multi-modal
LLMs, but their abstractive power is hindered by their disembodiment. To achieve what
an embodied intelligence, physicality in space-time is required.

subproblems because it enables a focus on uni-directional communication and
also supports evaluation: did the robot do the right thing in response to this one
(often text-based) command? Evaluating the success of a collaborative dialog
is more expensive because it requires a dialog partner.

Crucially, to pass the Grounded Turing Test, an agent must be embodied,
acting in the world, processing high-dimensional, high-frequency input from
its sensors, and producing high-dimensional, high-frequency output from its
actuators. It is the robot’s behavioral response to language input that defines
whether it succeeds or fails. Intelligence can only take place in the context of a
computational process enacted over time and space. This substrate is the stage
on which goal-oriented intelligent behavior plays out. Table 1.1 summarizes
each of the sorts of language in our test along with a nominal example from
each category.

1.3.1 Human-to-Robot Communication
Human-to-robot tasks consist of the human providing some kind of input to the
robot, either verbal, gestural, or behavioral, and then observing its response.

Interpreting Instructions Interpreting instructions means mapping between
language and some action in the external world. The challenge is to map
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Problem Setting Example

Human to Robot Communication
H: Pick up the red block.

Interpreting Instructions R: <Picks up the red block>
H: The red block is on the table.
: R: <Updates world model. Later gets the red block when
Interpreting Statements About the World e

. . H: I want the red block.
Interpreting Information About Mental State  R: <Gives the red block to the person>

Robot to Human Communication
. . . R: The red block is on the table next to the cup.
Delivering Information

R: Can you give me the red block?

Asking for Help

R: Where is the red block?

Asking Questions
. . . H: Where is the red block?
Answering Questions About Perceptions R: I se it on the table.

. . H: What are you trying to do?
Answering Questions About Mental States R: Get the red block.

H: Where is the red block?

Answering Questions About Beliefs R: You told me that it’s on the table.
g
H: Why did you drive to the table?
o - : R: You want me to pick up the red block, and you told me that
Answering Questions About Actions e
Human-Robot Dialo Fluid dialog in different settings with all of the above elements.
g

Table 1.1

Classes of linguistic interaction and nominal examples from each. H indicates the
human speaking; R indicates the robot. Ultimately we imagine fluid dialog where the
speaker role does not matter; however we separate it here because the behavior of the
robot is very different depending on the role it plays in each dialog turn. A robot that
can flexibly engage in all of these types of language and behaves appropriately passes
the Grounded Turing Test.

between words in language and objects, places, and actions in the external
environment, enabling the robot to choose low-level, mid-level, and high-
level actions to take in the world, to change the world state according to the
goal expressed in language. Compared to other interfaces, language is unique
because a person can give commands to the robot at a variety of levels of
abstraction, from very low level commands (e.g., “move your arm up just a bit,
okay there, stop!”) to very high-level commands (e.g., “clean the kitchen”) that
might take hours to fully execute.

Robots can use large language models (LLMs) to understand language more
flexibly and more capably than ever before. Our review (Cohen et al. 2024)
situated the literature into a spectrum with two poles: 1) mapping between
language and some manually defined formal representation of meaning, and
2) mapping between language and high-dimensional vector spaces that trans-
late directly to low-level robot policy. Using a formal representation allows
the meaning of the language to be precisely represented, limits the size of
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the learning problem, and leads to a framework for interpretability and formal
safety guarantees. Methods that embed language and perceptual data into high-
dimensional spaces avoid this manually specified symbolic structure and thus
have the potential to be more general when fed enough data, but require more
data and computing to train.

For example, our recent paper, Lang2L.TL (Liu et al. 2023) enables ground-
ing natural language commands to task specifications in a widely used formal
language, Linear Temporal Logic (LTL). Grounding navigational commands
to LTL leverages its unambiguous semantics for reasoning about long-horizon
tasks and verifying the satisfaction of safety constraints. Existing approaches
require training data from the specific environment and landmarks that will be
used in natural language to understand commands in those environments, but
Lang2LTL leverages LLMs to ground temporal navigational commands to LTL
specifications in environments with no prior language training data. Figure 1.4
shows example commands from our evaluation set.

Regardless of the approach taken for command understanding, it is criti-
cal to address the problem of hierarchical abstraction. Language can specify
very low-level commands, such as “move your arm one centimeter” and very
high-level abstract commands such as “clean the kitchen,” so we must con-
nect language to high-dimensional perception from the physical world and
high-dimensional action output over timescales from seconds to minutes to
hours.

Interpreting Statements about the World Language provides a symbolic
way of providing spatial and temporal information about the external world to
an embodied agent. A robot must be able to map statements about the world to
predictions about future perceptual input and the effects of its future actions.
A statement like “the block is on the table” is fundamentally a statement about
where the robot can look to find the block in the physical world. Animal alarm
calls are of this nature; for example, Templeton, Greene, and Davis (2005)
showed that chickadee alarm calls encode information about predator risk,
enabling them to communicate that there were smaller (and therefore more
maneuverable and thus more dangerous) predators to other members of their
flock and eliciting a more energetic mobbing response. We should be able to
observe our intelligent robot changing its behavior in response to these sorts
of communicative statements about the world, showing that it can adjust its
behavior based on language from its human partner.

For example, Walter et al. (2013) showed a method for incorporating infor-
mation from language into the robot’s ability to make geometric maps of
its environment. After a person informs the robot that “the kitchen is down
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Figure 1.4
Lang2LTL (Liu et al. 2023) can ground complex navigational commands in household
and city-scaled environments—without environment-specific training.

the hall,” the robot incorprates this information into its mapping system to
construct a more accurate geometric and semantic map, as shown in Figure 1.5.

Similarly, our work on object search demonstrates that a robot can use
language to more efficiently find objects, illustrated in Figure 1.5. Zheng et
al. (2021) enabled a person to use spatial language to describe object locations
and their relations to a robot. The robot could then use this information to more
efficiently find an object. We considered spatial language a form of stochas-
tic observation. To model ambiguous, context-dependent prepositions (e.g. the
car in front of the building), we designed a convolutional neural network that
predicts the language provider’s latent frame of reference given the environ-
ment context. Search strategies are computed via an online POMDP planner.
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Top: A robot interprets information from language to improve its ability to make seman-
tic maps of the environment (Walter et al. 2013). Bottom: A robot uses language
information to better search for objects (Zheng et al. 2021).

Figure 1.5 shows the probability distribution that results from the language
input, which then biases the search process by incorporating that information
to find the object more quickly.

More generally, we need ways for humans to tell robots information about
the world using language, both the locations of objects and advice on how
to execute skills (e.g., “you can sweep better if you use the large broom”).
This capability should lead to shared planning and problem-solving mediated
by human-robot dialog. To address this problem, it is important to have shared
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representations for meaning and action. Herb Clark referred to this as establish-
ing “common ground” (Clark 1996). By establishing common ground between
the person and the robot, shared states of knowledge—the first steps towards
collaboration—are possible. This problem requires collaborative dialog to
build up shared representations about word meaning over time.

Interpreting Information about Mental States A key aspect of the exter-
nal world is other agents’ mental states: their goals, desires and beliefs about
the world. Based on the person’s behavior, both verbal and non-verbal, the
robot needs to make inferences about what the person wants. Grice (1975)
defined the cooperative principles that people use when communicating with
each other: quantity (say no more than what is necessary), quality (say things
that are true), relation (say things relevant to the discussion), and manner (say
things clearly, briefly, and orderly). Sometimes violating these maxims itself
has communicative efficacy, as when a person uses an implicature. For exam-
ple, when a person states, “this coffee is cold,” at a lexical level is a factual
statement about the world. However, by the maxim of relevance, this statement
implies the mental state in the person that they want hot coffee, and a helpful
robot or waiter should fetch it for them. Building on conversational implica-
ture, one can imagine a robot making inferences about a person’s beliefs, goals,
and desires, interpreting a person’s ironic or sarcastic statements, laughing at
jokes, and engaging in collaborative planning dialog on complex tasks.

Vogel et al. (2013) showed a computational approach for the emergence of
Gricean maxims from multi-robot decision theory. This approach showed that
using a decentralized-POMDP framework (Dec-POMDP) enabled robots to
learn or generate a language to communicate the state of the world to each
other in a partially observed setting. This work showed that a ListenerBot that
did not take into account the belief or actions of its partner did not perform
as well as a DialogBot that maintains a model that fits the partner’s beliefs.
This work was limited in its ability to generalize to new tasks, was extremely
computationally challenging, and required robots “collude” with each other at
the beginning; the language they use to communicate with each other emerges
computationally from the fact that they have access to a model of their internals
at the beginning of the task, even if they can only communicate in limited ways
during the task.

[DW: Chatter paragraph] In recent work, Kross (2021) looks at the effect that
positive affirmations have on mental states of a person. It points to the gener-
ative nature of the internal monologue in the human mind. In Chatter, Kross
argues the internal monologue shapes our collective experience. This becomes
a test for understanding the internal human state and the debugging nature
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of language. Cognitive Behavioral Therapy and Cognitive Processing Ther-
apy exploit similar phenomena in order to repair the way humans think. The
Rorschach test is a primitive evaluation that humans have employed to debug
what humans are predicting in their perception of the world.

Open research questions in this space include how to interpret a person’s
goals from their physical and social actions, predicting how the robot’s actions
will affect the person’s beliefs about them (e.g., Dragan, Lee, and Srinivasa
(2013) described a framework for reasoning about predictable motion that aims
to achieve a task as efficiently as possible vs. legible motion that aims to com-
municate with an observer about what task the robot is performing, and Tellex
et al. (2014) which reasons about how to ask for help by modeling a person’s
mental state in order to uniquely and concisely specify an object).

1.3.2 Robot-to-Human Communication

Robot-to-human communication primarily focuses on question answering,
although a robot could also choose to unilaterally initiate dialog with a per-
son, for example to tell them about something dangerous. Answering questions
from a human interlocutor is a fundamental capability of any robot that uses
language. We divide question answering into subsections based on the type of
question and the information provided.

Delivering Information A robot should have the means to convey infor-
mation to other embodied agents. A recent study on elephants used machine
learning to differentiate the sounds that they make to each other to determine
that they have a naming scheme (Pardo et al. 2024). Under this paradigm,
we should also be able to distinguish the gestures and communication that an
embodied agent has. While baking English into such a system may give the
illusion of delivering information to a user, we need to be able to indicate
holistically that the behavior has intent instead of an LLM detached from the
reality the agent finds itself in.

A robot could deliver information to a person for many reasons. It may
be tasked with telling the person if the environment changes in some way;
it may exist as an information delivery robot, for example, to give people a
tour or welcome in a building (Lee, Kiesler, and Forlizzi 2010; Bohus, Saw,
and Horvitz 2014). In this setting, it is key for the robot to have some model
of what information is relevant to convey to the person based on their cur-
rent knowledge and goals. Rendering this information to text is easily done by
LLMs; the key problem is to model what the person wants to know and to find
the relevant information in the physical world. Previous work has approached
this problem by pre-programming the robot with information about the world,
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Figure 1.6

A robot engaged in assembling an IKEA LACK table requests help using natural lan-
guage. A vague request such as “Help me” is challenging for a person to understand.
Instead, Knepper et al. (2015) presents an approach for generating targeted requests
such as “Please hand me the black table leg that is on the white table.”

as in Bohus, Saw, and Horvitz (2014), which placed a tour guide robot at the
entrance of a lab area and endowed the robot with knowledge of the layout of
the lab.

Asking For Help The ability to ask for help can enable robots to increase
their effectiveness by eliciting aid from a person to bridge gaps in their cur-
rent capabilities. Additionally, asking for help provides the human partner with
information about the robot’s goals, as well as availing itself of a key resource
for getting things done: its human partner. Knepper et al. (2015) showed that a
robot could improve task success rates by asking for help from a person when
it got confused, trading off between making its request specific to the prob-
lem it needed without providing irrelevant information. Figure 1.6 shows an
example where a robot can ask for help in vague terms, such as "help me" or
alternately make a more targeted request like "please hand me the black table
leg that is on the white table." The challenge for generating specific, useful
requests is that the robot needs to model the person’s mental state and how
they will interpret the robot’s words in order to generate a succinct yet specific
request that is easy to understand.

Answering Questions About Perceptions Answering questions about the
world is a key ability to probe a robot’s perceptual system. The robot needs
to describe its perception of the environment, not just from a single image but
from a sequence of high-dimensional perceptual inputs gathered over time, in
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Figure 1.7
A Kuri robot maps its environment and stores information about objects it has
seen (Idrees et al. 2021).

a goal-directed way, using language to specify what to pay attention to and
what to ignore.

Existing work on visual question answering (Manmadhan and Kovoor 2020)
focuses on answering questions about a single image, usually taken manually
by a person and framed in a camera viewfinder. Idrees et al. (2021) described an
approach where a robot equipped with situational awareness can help humans
efficiently find their lost objects. Their approach allows for a variety of query
patterns, such as querying for objects with or without the following: 1) spe-
cific attributes, 2) spatial relationships with other objects, and 3) time slices.
The challenge is that the robot may have partial views of the object and also
multiple views of the same object which change over time. Furthermore, at
mapping time, the robot does not know what object the person will be search-
ing for later, at query time. Figure 1.7 shows the robot, the metric map of
the environment, and spatial-temporal clusters of images which the robot has
determined refer to the same object. This clustering enables the robot to effi-
ciently search its memories at query time to find objects that match a natural
language description.

Answering Questions about Mental States Researchers in cognitive sci-
ence have long recognized the importance of mental states and language
processing in human behavior (Boyd and Schwartz 2021). The concepts of
theory of mind (ToM) and cognitive architectures have been explored in vari-
ous fields, including linguistics (Villiers 2007; Hale and Tager-Flusberg 2003)
and neuroscience (Huyck 2020). Recently, these ideas have begun to influ-
ence research in LLMs (“Theory of Mind Workshop at ICML 2024” 2024)
and related studies on cognitive-inspired LLMs (Zhu and Wang 2020). In
robotics, these concepts are being applied to Human-Robot Interaction (HRI),
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particularly in development robotics, where robots need to understand human
mental states and develop more sophisticated interaction mechanisms (Lang-
ley et al. 2022). Building on this foundation, the grounded Turing test aims to
evaluate embodied agents’ ability to model human mental states and engage in
meaningful interactions.

Intelligence can be understood as an emergent property of complex neu-
ral systems arising from the interaction between sensory inputs and cognitive
processes. Each transition to understanding what another human is saying,
gesturing, or gesticulating can be seen as a transition between mental states,
represented as hyperdimensional points in a high-dimensional space. This per-
spective allows us to describe all states of the mind as a set of N-dimensional
points, with a transition function between these points representing the low-
est energy representation averaged over time. The values of these points can
be mapped onto the state of all synapses in the mind, and intelligence can
be seen as the dynamic process of transitioning between these points through
space-time. This framework suggests that speech impacts both the speaker
and the listener by transitioning their mental states, creating a joint system
for processing information.

This perspective on language and intelligence also reveals its debugging
nature. Instead of a mind being forced to internalize its understanding of the
world, it is driven to find low-energy representations of how to express its inter-
nal state to convey meaning to other beings. This idea can be seen as an alter-
native explanation for Chomsky’s universal grammar, where the fundamental
basis for language is not an innate property but rather an emergent property
of complex cognitive systems interacting with their environment (Chomsky
1965). This emergent property perspective can be further understood through
the lens of information theory, which provides a framework for analyzing the
transmission of information. As Shannon’s information theory (Shannon 1948)
suggests, encoding and decoding processes play a crucial role in the transmis-
sion of information. Conveying detailed information about its internal state
would require significant energy and resources from a physically embodied
entity, whereas transmitting abstracted representations is more efficient. It is
essential to note that evolution is not optimization (Hertzmann 2024), as it
does not always lead to the most efficient solutions; rather, it finds satisfac-
tory ones given the constraints. Language has developed within an organism
to convey information as efficiently as it can, but there are limits to the com-
plexity of the information that can be described by the abstraction the agent can
make. To convey more information about itself, it needs higher-order represen-
tations of itself and the environment it is in. The need for these higher-order
representations leads to the concept of Kolmogorov complexity (Kolmogorov
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1965), which measures the complexity of an object or sequence in terms of
the length of its shortest description, providing a framework for understanding
the trade-offs between representation complexity and information transmission
efficiency.

Answering Questions about Beliefs As our robot operates and observes the
environment with its sensors, it must build a model of its beliefs about the
world. In robotics, these problems are characterized as state estimation (Thrun
2002). For example, in the Simultaneous Localization and Mapping (SLAM)
problem (Durrant-Whyte and Bailey 2006), the robot must build a model of its
environment over time from sensors such as its camera, LIDAR, and motion
sensors. The robot should be able to give insight into what it knows about the
world by answering questions about its beliefs. Zhong et al. (2022) surveys
work in video question answering, which is usually focused on answering
questions about surveillance videos or movies and films curated by people.
In robotics, the robot must be able to answer questions about its own experi-
ences and inferences it has made about those experiences. For example, Idrees
et al. (2021) showed a system that allows a robot to fuse its memories of the
environment into an efficient data structure that allows it to answer questions
about the locations of missing objects. Related, Das et al. (2018) defined a new
Al task of embodied question answering, where an agent in a 3D is asked a
question like “what color is the car?” To answer the question, the agent must
explore the environment to gather visual information through an egocentric
camera.

Answering Questions about Actions Interpretability and explainable Al are
key concerns as robots become more autonomous and more capable. A robot
needs to be able to explain its behavior (both successes and failures), and
answer questions about why it did what it did (both successes and failures).

Many approaches have used symbolic methods to enable interpretable Al
For example, Li et al. (2019) created a framework for interpretable rein-
forcement learning for robotic planning using linear temporal logic. Raman
et al. (2024) created a framework for learning grounded symbols using
LLMs. The system creates a language-based, perceptually grounded symbol
by prompting an LLM, making it easy for a planner to generate explana-
tions of why the system did what it did. Das, Banerjee, and Chernova (2021)
studied different approaches for generating interpretable explanations for fail-
ures, showing with a user study that untrained humans prefer explanations that
include the context and history of the robot’s actions, and that this additional
information enables them to more accurately identify the causes for a robot’s
failure (Chen et al. 2024).
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1.3.3 Human-Robot Dialog

When we put the pieces of human-to-robot communication and robot-to-
human communication together, we create a collaborative (or adversarial!)
dialog between the human and the robot. Clark (1996) describes dialog as a
Jjoint activity between two humans, analogous to dancing or playing a basket-
ball game. Each participant is constantly observing the other for signals large
and small, ranging from backchannel expressions like “uh-huh” to non-verbal
cues like hand gestures and eye gaze to explicit speech utterances to physical
actions in the world, like picking up an object.

1.4 Passing the Grounded Turing Test

Defining intelligence is challenging because it encompasses a collection of
capabilities, not just one. While progress can be made by addressing individ-
ual subproblems, integration is crucial to pass the grounded Turing test. To
achieve this, we need one system that demonstrates all the required capabil-
ities simultaneously in a physical body with high-dimensional sensory input
and high-dimensional motor output. Any single ability does not constitute Al;
only by exhibiting flexibility, tenacity, connection with the world, and respon-
siveness can intelligence be demonstrated. Passing this test is not necessary for
a robot to be intelligent, but rather a sufficient one. For instance, rats and crows
are intelligent without being able to pass the Grounded Turing Test, highlight-
ing that intelligence exists on a spectrum (see Figure 1.2 for an example of such
behavior). The spectrum of intelligence is highlighted in Figure 1.3, show-
ing the abstraction capabilities different organisms can develop and comparing
them to existing Al systems.

We must move beyond traditional machine learning paradigms that rely on
static, pre-collected datasets to advance towards true artificial general intelli-
gence. Current approaches often involve training models offline, which limits
their ability to adapt in dynamic environments. Instead, we must develop Al
systems capable of continuous online learning, where agents can process and
learn from high-dimensional sensory inputs in real-time. This approach is cru-
cial for embodied agents, such as robots, that must interact with and adapt to
their environment moment-to-moment. By enabling agents to learn from ongo-
ing experiences, we can build systems that evolve and improve without the
need for periodic retraining on curated datasets. Sutton (2019) suggests that
the “bitter lesson” of machine learning highlights the importance of systems
that can learn efficiently from their interactions with the environment, rather
than relying on human-labeled data.
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1.4.1 Sensorimotor Substrate

To build any framework for generalized intelligence, we need a sensori-
motor substrate (see Chapter 13 of this book), which can be characterized
as the things an elephant (or a rat) needs to move, navigate, and survive
in the physical world. For example, Milford, Wyeth, and Prasser (2004)
proposed RatSLLAM, an implementation of a model of a rodent’s hippocam-
pus that combines properties of grid-based, topological, and landmark-based
representations for localization and mapping. Similarly, the brain contains spe-
cialized submodules for visual perception, manipulation, tactile sensing, reflex
responses, and more. These submodules enable their respective problems to be
solved on a submanifold where the problem’s structure can be exploited more
efficiently. For example, for navigation in an Euclidean space, one can switch
from breadth-first-search to A* and exploit a strong heuristic to increase infer-
ence speed dramatically. Similarly, for SLAM, the Rao-Blackwelized particle
filter exploits the conditional independence of landmark locations relative to
the robot’s trajectory (Durrant-Whyte and Bailey 2006). Whether learned or
designed by a person, these structures are essential for efficient inference in
the physical world. The structures are critical for being able to model both the
intended behavior and the behavior of those around the system.

1.4.2 The Human Robot Collaborative POMDP

Next, we need a unified framework for reasoning and acting in the world. Over
the past fifteen years, we have built towards a new model for human-robot
interaction that enables language interpretation and question-asking using a
hierarchical representation for planning under uncertainty, called the Human-
Robot Collaborative POMDP (Partially Observable Markov Decision Process).
It builds on the POMDP framework (Kaelbling, Littman, and Cassandra 1998)
framework because POMDPs enable the robot to reason about its beliefs about
the world over space and time. POMDPs are the simplest model we are aware
of that captures everything that a robot is: states that evolve, with noisy obser-
vations of the external world, goals, and the ability to take actions that achieve
those goals. However, finding a policy for the robot based on its observa-
tions of human communication and actions is undecidable (Madani, Hanks,
and Condon 1999).

To reason efficiently about high-dimensional perceptual inputs, our agent
needs to acquire structured state representations and associated factored infer-
ence algorithms for the POMDP that lead to efficient reasoning and inference.
We note that these representations and algorithms can be either designed by
humans or learned by algorithms. This factored, hierarchical structure leads
to information-gathering behavior in a framework that supports the efficient



Elephants Don’t Write Sonnets 19

incorporation of multimodal observations from low-level sensors, human lan-
guage, and gestures, as well as background knowledge from large foundation
models.

We define the Human-Robot Collaborative POMDP as a tuple,
<S,A, O,R, T, Q> where:

« §is the set of states. Each state, s, is a tuple, <O,h> where h is the men-
tal state of the human and robot, and O is the physical state of the world,
factored into objects.

« a € Ais any action that the robot could take.

« 7, is the set of observations from the robot. It consists of a tuple of mul-
timodal information streams, <z,,l,, g,>, corresponding to physical sensor
information, language, and gesture.

« 1, 1s the reward at time ¢, which we define as achieving the person’s aims,
encoded in their mental state /.

o T: p(syy118s,a,) is the transition function, which models how the world
changes after the robot’s action. This transition functions in terms of
physical state and mental state.

o Q' aR, a l) =p(z, 1, g/10,, hy), which factors into terms for physical and
mental state.

This structure is summarized in Figure 1.8. The Human-Robot Collaborative
POMDP unifies the conditional independence assumptions and state represen-
tations. This unification is more than the sum of its parts: it enables the robot
to interpret a person’s requests, ask questions, and ask for help in a decision-
theoretic framework by modeling its uncertainty about what a person wants
and its own ability to interpret requests. The challenge in a unified framework
is efficient inference when handling large observation spaces and commands at
different levels of abstraction. The following sections propose new techniques
for enabling efficient inference in this framework.

1.4.3 Compositional Learning

Intelligent agents need to infer abstract concepts in terms of causal rela-
tionships from high-dimensional perceptual input and make plans for high-
dimensional motor output. Synchronicity is defined by Carl Jung as finding
meaningful causal relationships in co-occurances of physical phenomena (Jung
1960). Pearl (2009) built on this idea by showing that the language of proba-
bilistic graphical models can be used to enable inference of causal relationships
from data. Inferring correct causal relationships and corresponding conditional
independence then enables more efficient learning.
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b) Factored model. States are structured as sets of physical objects with pose, along with human men-
tal state. The robot plans efficiently using a hierarchy of physical actions and communication actions.
Observations are factored into physical observations and human language and gesture. This structure
enables efficient learning; our claim is that this structure itself must be learned, along with model param-
eters.

Figure 1.8
Human-Robot Collaborative POMDP.
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Compositionality arises from conditional independence assumptions and
enables robots to apply learned behaviors in various contexts, combine behav-
iors in new ways, and use language, perception, and action skills to accomplish
complex tasks. This ability needs to be built on the sensorimotor substrate,
described in the following section, and then built up to create layers of abstract
concepts that connect to language.

1.4.4 Data-Driven Robot Learning

Leveraging the stream of high-dimensional, high-throughput data in an offline
setting exists in existing methods for training robot policies. Existing policy
models, such as diffusion policies (Chi, Xu, Feng, et al. 2024), ACT (Zhao et
al. 2023), or Mamba policy (Cao et al. 2024) are all candidates for training spe-
cific behaviors or skills for robots. What is important about any method is the
ease of data acquisition, the support for multiple sensors, and a method that can
target multiple embodiments. Existing works, such as UMI (Chi, Xu, Pan, et
al. 2024) or ALOHA (Zhao et al. 2023), accomplish this by building handheld
portable devices or inexpensive teleoperated robotic platforms, respectively.
We can leverage simulation, virtual-reality teleoperation, or hand-held human
collected demonstrations to seed robot policies, and then further train them
using reinforcement learning methods.

The primary objective of optimizing is scaling and multi-modality. We
hypothesize that we can significantly reduce the data required for robot pol-
icy learning by increasing the number of modalities the robot can access. We
can then further observe positive transfer between those skills by collecting a
massive sweep of skills encompassing all behavior we can imagine the robotic
platform is capable of. This data collection enables further multi-task and rep-
resentation learning research to enhance robotic execution. We will also start
accomplishing different aspects of the Grounded Turing Test by transferring
human knowledge and the ability to use tools to these robots. Our joint research
is actively testing this hypothesis at the RAI Institute.

We need to build a generative model that is capable of predicting future
states from the ongoing stream of high-dimensional data. This is going to take
in visual, tactile, force, audio, and more data in a GPT-style model architec-
ture and autoregressively predict future states based on this data. Because of
this model, we can use it to determine whether the current observations we are
seeing now fall within our distribution of past observed states, by comparing
against what we predicted with what we observed. This is following similar
models to how humans are able to process language by predicting what people
are about to say to process concepts and achieve alignment during a conversa-
tion [citation]. This generative model is another way that we can train robots to
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learn language naturally rather than having language as a first order input into
the model architecture itself.

1.4.5 Updating the Weights and Structure Simultaneously

Many of the existing problems in robotics involve non-differentiable or non-
smooth functions. For contact dynamics, trajectory optimization, control bar-
rier functions, or observation models, each of these features has non-smooth
or non-differentiable underlying functions (Qadri and Kaess 2023; Vemula and
Bagnell 2020). Existing approaches often struggle to adapt and learn arbitrary
functions due to their fixed internal structure when faced with complex, long-
horizon tasks. Ideally, a neural network should be able to reorganize itself to
find new neural pathways that can effectively tackle a given task. The big prob-
lem with the state-of-the-art learning paradigms is that they cannot update
the network structure during training. The Chinese Restaurant Process (Blei
and Ramachandran 2006) describes a situation where a restaurant has infinite
tables, and customers can sit at any table. The first customer sits at the first
table, and the second customer has a choice of whether to sit at the second
table or at the first. This puzzle describes the same process we, as researchers,
have to do with data passing through a neural network - we are not sure what
the correct partitioning of the data is. While we pick a fixed set of parameters
to update for our current neural networks, we are not building algorithms that
can update the structure with those changes. This is crucial for language, where
new concepts are developed through learned experience in the real world.

Many different ways have been proposed to update the structure of neural
networks during training. Evolutionary algorithms have existed for decades.
However, they have not yet been successfully used for large-scale training.
What we are missing in developing language is a loop that allows a system
to observe the consequences of its own actions. This is a system that lever-
ages the ongoing estimation of the world, but has enough parameterization to
model itself simultaneously. This is how we can build symbols that are gener-
ated automatically by the experience of the embodied agent. We can leverage
the ever-expanding neurons to handle a wider variety of problems. We want
language to develop organically from the fact that the robot learns rather than
as a first-order input into the system.

Taking these ideas further, we have not seen any instances of successful
online learning of robots from the realtime stream of data coming in from
multiple sensors. Methods such as Sun, Cetin, and Tang (2025) and Behrouz,
Zhong, and Mirrokni (2025) offer suggestions for implementing test-time
learning strategies. This further suggests we can then schedule learning around
learning within a demonstration, between demonstrations, and treat all data
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that comes into models as a way of improving performance. This also provides
an alternative form of memory for robot policies where the state of the system
can now be embedded in the weight space rather than methods that require
us to store memory in more recurrent fashions, such as Perceiver 10 (Jaegle
et al. 2022). We suggest that data-driven methods will be a good direction to
take robotics research, in parallel with other methods we have suggested. They
provide a logical structure for the human-robot collaborative POMDP, where
part of the collaboration is happening in a data collection step.

One such implementation of a self-updating system is gradient-free rein-
forcement learning, such as those in neuroevolution (Such et al. 2017) and
forward-forward (Hinton 2022). Gradient-free methods can simultaneously
learn the structure and activation of neural networks (White et al. 2023). Newer
works, such as NoProp (Li, Teh, and Pascanu 2025), suggest that we can opti-
mize intermediate layers locally using denoising methods instead. Researchers
have demonstrated using fixed-structure networks that they can generalize to
the unseen hierarchical organization of tasks but struggle beyond simple pick
and place tasks (Vijayaraghavan et al. 2024).

Forward-Forward (Hinton 2022) also implies alternative methods for updat-
ing neural network weights by leveraging the embodied nature of sys-
tems rather than relying on backpropagation-based approaches. This method
involves a reward mechanism that promotes “good” examples within the
domain and penalizes “bad” out-of-domain examples. However, effectively
training an embodied agent requires a reliable mechanism for generating adver-
sarial examples to define domain boundaries, which is currently lacking. The
ultimate goal is to mimic human behavior, as humans represent our collec-
tive gold standard for intelligence. Notably, backpropagation lacks biological
plausibility (Hunsberger 2017), and while deep learning systems may have
some biologically-inspired components, their weight update mechanisms do
not mirror human cognitive processes. To make progress, we should shift our
focus from the convenient but potentially misleading realm of deep learning
and instead explore gradient-free learning methods that prioritize human plau-
sibility and design, avoiding the common pitfall of searching for solutions only
where it is easy to look.

One promising approach is to draw inspiration from Neural Architecture
Search (NAS) algorithms. NAS involves automatically searching for the opti-
mal architecture for a given task, rather than relying on manual design. By
leveraging reinforcement learning mechanisms, NAS methods can update their
internal structure to better suit the task at hand (White et al. 2023). If we
can reduce the complexity required to update the network architecture, we
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Network structure falls on a spectrum. From multi-layer-perceptrons to NeRFs, the
amount of structure changes the kind of learning the system can perform and its brittle-
ness in response to out of distribution effects (Rumelhart, Hinton, and Williams 1986;
Mildenhall et al. 2020; Wang et al. 2024; Krizhevsky, Sutskever, and Hinton 2012;
Vaswani et al. 2017).

may be able to more effectively handle larger-scale tasks. Moreover, consid-
ering hyperparameters and neural architectures as analogous to an organism’s
DNA highlights the potential for NAS to bridge the gap between software and
hardware design, enabling us to express instructions that can build complex
systems.

Silver et al. (2021) lays out a framework for defining a series of primitive
rewards that, over time and collected experience, begin to develop into com-
plex rewards. The reward system evolves into a larger organization via a mirror
neuron system when these agents interact. Reward engineering for these prim-
itive rewards is a critical field of research we need to begin to explore in the
context of robotics.

By dynamically updating its structure, the robot can learn hierarchical and
object abstractions in a way that would be impossible with a fixed network
architecture. This is particularly relevant to complex systems like horse herding
behavior, which we discussed earlier. A static network would require manual
tuning of hyperparameters to capture the nuances of herd dynamics, such as
dominance hierarchies and social interactions. By contrast, a dynamic archi-
tecture can adapt and refine its representations in real-time by building upon
previously learned knowledge to improve performance. For instance, a model
could seamlessly adjust to herd size or composition changes, learning to rec-
ognize and respond to new social structures without extensive retraining or
computational resources. This flexibility enables the model to learn and adapt
throughout its lifespan rather than being limited by its initial design.

The structure of the network is critical to getting this right. There is a sys-
tems engineering approach where one can train a general MLP on a series
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By biasing different portions of a proposed gradient-free learning system, we can have
emergent structures that inherently lend themselves to different strategies. While these
structures are chosen to emulate the brain, in practice, they will likely be more ambigu-
ous in their relative function. It is also possible that the abstract reasoning and language
sections will be the same.

of domains and then use a mixture of expert models to produce productive
output. However, this approach will likely bias the model too heavily in inter-
mediate results that we, as humans, believe should be relevant for the model
to perform well. Instead, one could construct a model with different portions
aligned with architectures such as CNNs, Transformers, Diffusion, and RNNs
that are more amenable to particular kinds of data than others. The system
can then use energy-based optimization to reduce the overall complexity of
the representation, thereby enforcing the abstraction of the high-dimensional
input data. A critical component is that the sensory data is provided simultane-
ously in a combined format, such as cross-attended modalities. This forces the
potential utilization of sensory information and allows the network to optimize
which portions of the data it views. For example, this might allow a robot to
learn a closed-loop multi-modal sensorimotor policy for inserting a key into
the door, considering vision, the sound of the lock turning, and the changing
forces on the hand. Humans have co-opted portions of their brains to serve rea-
soning skills. Still, that expressive capacity is likely too limited to understand
a concrete mathematical formulation for why certain concepts feel “correct.”
The missing portion of this is the mirror system. A critical component of
human development of intelligence is looking for instances of our own men-
tal framework in things all around us (Cullen et al. 2014; Wan and Chen
2021). We should look to see this as an auxiliary reward signal for training
a system better than it would be if we solely relied on external factors. The
complex question is, what do we model? Do we build a mirror neuron system
for humans? For other robots? For both? Should we model and seek faces as
well, to match human language? How important is conveying emotion through
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the face? These aspects of ourselves as humans are so critical for our develop-
ment that it behooves us as researchers to begin teasing out what effects these
seemingly purely social attributes have on the quality of the motor systems we
have as people.

The human brain’s impressive 100-500 trillion synapses (Drachman 2005)
allocate only a fraction, roughly 3-5 trillion, for visual processing (Colonnier
and O’Kusky 1981). However, as evolution is not optimization (Hertzmann
2024), we must reevaluate our approach to modeling visual processing. We can
roughly equate one synapse to one parameter in a neural network (Millidge
2022) within an order of magnitude. The success of models like ResNet in
processing single images suggests that even with 25.6 million parameters (He
et al. 2016), such biological structures in brains are likely overfitting on sensory
input. Zhang et al. (2020) has shown that overparameterization can result in
the memorization of inputs. This may lead to issues like hallucinations and
erroneous visual beliefs.

By contrast, an online learning agent might require only 50—100 million
parameters to process single images effectively. Since images are dependent
variables, they may not necessitate extensive video processing systems like
CVF or continuous visual flow. Extending this idea to the motor cortex, we can
estimate that many tasks do not require intense motor processing, implying a
limited need for large-scale models for every subproblem.

This limitation is not due to computational constraints but rather our
inability to integrate these models effectively. Despite neural networks being
universal functional approximators, we lack the necessary training data and
objective functions to evaluate end-to-end systems. Our goal in this chapter is
to establish a foundation for addressing these challenges and developing more
efficient and effective models for robot systems.

1.5 Closing Thoughts

“A picture is worth a thousand words.” What is beautiful about language is not
the words themselves but the circumstances that created those words, which are
high-dimensional sensory inputs collected over time through active interaction
with the physical world. Modern-day Al has surpassed the original Turing Test
and failed to inspire the spark of intelligence we see in living organisms. It
behooves us to invent another metric that captures the relationship between
intelligent thought and existence in the world.

In this work, we have defined a behavioral test for intelligence. But what
about consciousness? In the philosophical tradition of the Turing Test, we aim
to sidestep this question and ask only if our robot supports these behaviors,
leaving the question of whether it is conscious or not to the philosophers. It is
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possible, even likely, that our Grounded Turing Test is not complete, and we
need to add even more behaviors to our list before people agree that our robot
is intelligent. Regardless, the series of software and hardware systems we need
to build a physical AGI is now coming into focus. We can conceive the system
we need to design, the impact that it will have, and what kinds of resources
we need to allocate to study its behavior. With this technology within reach,
we imagine a world not where robots replace man, but instead where novel
systems of augmenting people make us more productive as a species.
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